
Design Specification for Delegation and Incentives in Cardano

Deliverable SL-D1

Philipp Kant <philipp.kant@iohk.io>

Lars Brünjes <lars.bruenjes@iohk.io>

Duncan Coutts <duncan.coutts@iohk.io>

Project: Shelley Ledger

Type: Deliverable
Due Date: 23th July 2020

Responsible team: Formal Methods Team
Editor: Philipp Kant, IOHK

Team Leader: Philipp Kant, IOHK

Version 1.21
23th July 2020

Dissemination Level
PU Public

√
CO Confidential, only for company distribution
DR Draft, not for general circulation

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) i

Contents

1 Purpose 1

2 Requirements 2
2.1 Functional Requirements . 2

2.1.1 Proof of Eligibility . 2
2.1.2 Visibility of Delegation on the Blockchain 2
2.1.3 Restricting Chain Delegation . 2
2.1.4 Cheap Re-Delegation . 2
2.1.5 Neutral Addresses . 2
2.1.6 Multi-Signature Addresses . 2
2.1.7 Multi-Signature Delegation . 3

2.2 Security Requirements . 3
2.2.1 Sybil Attack Protection at Stake Pool Level 3
2.2.2 Address Non-malleability . 3
2.2.3 Public Payment Keys Should not be Disclosed Prematurely 3
2.2.4 Mitigate Key Exposure . 3
2.2.5 Handle Inactive Stake Pools . 4
2.2.6 Avoid Hard Transition . 4
2.2.7 Change Delegation Without Payment Key 4

2.3 Non-functional Requirements . 4
2.3.1 Asymptotic space and time complexity . 4
2.3.2 Minimise economic attacks . 4

2.4 Requirements to Preserve Existing Features . 4
2.4.1 Master Recovery Key . 4
2.4.2 Address Recognition . 5
2.4.3 Wallet should be Runnable on Independent Devices 5
2.4.4 Maintain Privacy . 5
2.4.5 Short Addresses . 5
2.4.6 No lookup of old blocks . 5

2.5 Design Goals . 5
2.5.1 No Special Wallet for Stake Pool Operators 5

3 Design of Delegation 6
3.1 Overview of Delegation . 6
3.2 Addresses and Credentials . 6

3.2.1 On Pointer Addresses . 8
3.2.2 On Enterprise Addresses . 9
3.2.3 Reward Accounts . 9
3.2.4 On Byron Addresses . 9
3.2.5 HD Wallet Structure in Shelley . 10
3.2.6 Address Recognition . 10

3.3 Certificates and Registrations . 10
3.3.1 Certificates on the Blockchain . 10
3.3.2 Certificate Replay Prevention . 11
3.3.3 Stake Address Registration Certificates . 12
3.3.4 Stake Pool Registration Certificates . 12
3.3.5 Single Operator, Possibly Multiple Owners 14
3.3.6 Delegation Certificates . 14
3.3.7 Operational Key Certificates . 15

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) ii

3.3.8 Certificate Precedence and Validity . 16
3.4 Delegation Relations . 17

3.4.1 Address Delegation Relation . 17
3.4.2 Stake Pool Delegation Relation . 17
3.4.3 Overall Stake Distribution . 17
3.4.4 Chain Delegation . 17

3.5 State Tracking for delegation . 18
3.5.1 Stake Addresses . 18
3.5.2 Reward Accounts . 18
3.5.3 Stake Pools . 18
3.5.4 Active Delegation Certificates . 19
3.5.5 Stake per Stake Address . 19

3.6 Slot Leader Schedule and Rewards Calculation . 19
3.7 Block Validity and Operational Key Certificates . 19
3.8 Transition to Decentralization . 20

3.8.1 Motivation . 20
3.8.2 Proposal . 20
3.8.3 Rewards during the Transition Phase . 21
3.8.4 Transition Plan . 21

3.9 Rewards . 22
3.9.1 Distributing Rewards . 23

3.10 Fees . 24
3.10.1 Transaction fees . 24
3.10.2 Deposits . 24

3.11 Time to Live for Transactions . 25
3.12 Robustness at the Epoch Boundary . 25

3.12.1 Calculating the Leader Schedule . 25
3.12.2 Calculating and Distributing Rewards . 25

3.13 Wallet Recovery Process . 25
3.13.1 Trees of Depth 1 . 26
3.13.2 Taller Trees . 27
3.13.3 Maximal Address Gap . 27

4 Delegation Scenarios 28
4.1 Stake Pool Registration . 28
4.2 Stake Pool Metadata . 28
4.3 Display of Stake Pools in the Wallet . 29
4.4 Basic Delegation . 30
4.5 Delegation of Cold Wallets . 31
4.6 Self Delegation . 31

5 Design of Incentives 32
5.1 Overview of Incentives . 32
5.2 Parameters . 33
5.3 Reminder: Stake Pool Registration . 33
5.4 Epoch Rewards . 34

5.4.1 Transaction Fees . 34
5.4.2 Deposits . 34
5.4.3 Monetary Expansion . 34
5.4.4 Treasury . 35

5.5 Reward Splitting . 35
5.5.1 Relative Stake: Active vs Total . 35

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) iii

5.5.2 Stake, Performance, and Block Production 35
5.5.3 Pool Rewards . 37
5.5.4 Reward Splitting inside a pool . 38

5.6 Non-Myopic Utility . 38
5.6.1 Pool Desirability and Ranking . 38
5.6.2 Non-Myopic Pool Stake . 39
5.6.3 Non-Myopic Pool Operator Rewards . 39
5.6.4 Non-Myopic Pool Member Rewards . 39
5.6.5 Replacing Apparent Performance . 39

5.7 Utility . 39
5.8 Claiming Rewards . 40
5.9 Information in Daedalus . 40
5.10 Deciding on Good Values for the Parameters . 40

5.10.1 k . 40
5.10.2 a0 . 40
5.10.3 ρ . 42
5.10.4 τ . 44

6 Satisfying the Requirements 44

A Assessment of Rewards Sharing Mechanisms 45
A.1 General Considerations . 45

A.1.1 Hierarchy of desirability of reward distribution 46
A.1.2 Summary of key points of when rewards are calculated 46

A.2 Approaches that are Ruled Out . 47
A.2.1 Manual Sharing . 47
A.2.2 Automatically Issue Transactions Each Epoch 47
A.2.3 Let Members Collect Rewards . 47

A.3 Feasible Approaches . 47
A.3.1 Automatic UTxO Updates . 47
A.3.2 Lotteries per Stake Pool . 48
A.3.3 Reward accounts per stake address . 49

B Deposits 50
B.1 Motivation . 50
B.2 Mechanism . 50

C Design Option: Stale Stake 51

D FAQ 52
D.1 Why will stake pools accept new stake pool registration certificates? 52
D.2 Won’t stake pools reject delegation certificates that delegate away from them? . . 52

E Transaction Metadata 53
E.1 Motivation and design goals . 53
E.2 Detail . 53
E.3 Explanation and use . 54
E.4 Binary schema . 55

References 55

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) iv

List of Figures

1 Positioning of this Deliverable (outlined in red). vii
2 Addresses and Credentials . 7
3 Relationships between the keys, addresses, and certificates 11
4 Effect of different choices for a0 . 43

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) v

Change Log

Rev. Date Who Team What
1 2018-12-18 PK, LB, DC FM

(IOHK)
First version that is considered stable
enough to warrant V1. Some things still
need to be pinned down.

2 2019-01-07 PK, LB, DC FM
(IOHK)

Changes after the first day of the Berlin
workshop. TTL for transactions; stakepool
registration.

3 2019-01-08 PK, LB, DC FM
(IOHK)

Changes after the second day of the Berlin
workshop. Avoid Contention at Epoch
Boundary. Refunds after stake pool retire-
ment. Clarifications and corrections.

4 2019-03-01 PK, LB, DC FM
(IOHK)

Incorporating further input from the work-
shop in Berlin, and following discussions,
into the document. Transactions have
to have at least one UTxO style input;
stake pool metadata formats; choice of KES
scheme; deposits information; clarify certifi-
cate replay protection; fix rewards to trea-
sury for unregistered stake pool key; update
block validity to require operational key; ad-
ditions to Operational Key section.

5 2019-04-05 PK, LB, DC FM
(IOHK)

Rewrote the chapter on rewards.

6 2019-04-08 PK, LB, DC FM
(IOHK)

General review of the document. Mostly
small things. Consistent wording, spelling,
readability, removed some obsolete things.

7 2019-04-11 PK, LB, DC FM
(IOHK)

Some subtle corrections in the rewards chap-
ter after review by Aikaterina. First version
officially published on the IOHK blog.

8 2019-05-17 PK, LB, DC FM
(IOHK)

Some clarifications in response to review by
the auditors.

9 2019-06-07 PK, LB, DC FM
(IOHK)

Update section on script addresses.

10 2019/10/09 Kevin Hammond FM
(IOHK)

Added standard cover page.

11 2020-02-28 PK FM
(IOHK)

Clarify when to use active/total stake.

12 2020/03/11 DC FM
(IOHK)

Document the metadata feature.

13 2020-06-12 PK FM
(IOHK)

Rewrite chapter on addresses. Now includes
multi-sig, and is clearer about the distinction
of payment addresses, stake addresses, cre-
dentials.

14 2020-06-15 PK FM
(IOHK)

Ensure consistent wording, after the change
in terminology in the last edit.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) vi

Rev. Date Who Team What
15 2020-07-06 PK FM

(IOHK)
Correct sentence about enforcing pledge, to
be consistent with implementation; pools
do not receive rewards, but can still create
blocks when they fail to meet their pledge.

16 2020-07-06 PK FM
(IOHK)

Minor changes after audit. Nothing that af-
fects the implementation.

17 2020-07-23 PK FM
(IOHK)

Change: undistributed rewards go to the
reserves, not to the treasury.

18 2020-10-08 J. Corduan FM
(IOHK)

Change: include member stake in the non-
myopic stake calculation. Change: replaced
average apparent performance usage with
references to the stake pool ranking docu-
ment.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) vii

Sh
el

le
y

Le
dg

er

M
ul

ti
Si

gn
at

ur
e

Sp
ec

.
SL

-D
3

N
on

-in
te

gr
al

 C
al

cu
la

tio
ns

SL
-D

2
Le

dg
er

 S
pe

c.
 v

1
SL

-D
5

Le
dg

er
 S

pe
c.

 v
2

SL
-D

11

Le
dg

er
 S

pe
c.

 v
3

SL
-D

16

Ex
ec

ut
ab

le
 S

pe
c.

 v
1

SL
-D

8

E
xe

cu
ta

bl
e

S
pe

c.
 v

2
S

L-
D

8a

E
xe

cu
ta

bl
e

S
pe

c.
 v

3
S

L-
D

8b
Sh

el
le

y
Im

pl
em

en
ta

tio
n

1.
0

SI
-M

3

In
ce

nt
iv

e
Sc

he
m

e
SL

-D
4

C
on

se
ns

us
 In

te
rf

ac
e

SL
-D

10

W
al

le
t I

nt
er

fa
ce

SL
-D

14

Tr
an

si
tio

n
Pl

an
 fr

om

Ex
is

tin
g

B
yr

on
/T

es
tn

et
SL

-D
9

Te
st

 S
ui

te
 v

1
SL

-D
7

Te
st

 S
ui

te
 v

2
S

L-
D

7a

Te
st

 S
ui

te
 v

3
S

L-
D

7b

Pr
op

er
tie

s
v1

SL
-D

6

P
ro

pe
rti

es
 v

2
S

L-
D

6a

P
ro

pe
rti

es
 v

3
S

L-
D

6b

P
ha

se
 1

P
ha

se
 2

P
ha

se
 3

9/
20

/1
9

9/
30

/1
9

10
/2

0/
19

11
/3

0/
19

10
/3

1/
19

10
/2

5/
19

10
/1

5/
19

10
/1

5/
19 11

/1
5/

19

12
/1

0/
19

12
/3

1/
19

1/
15

/2
0

1/
31

/2
0

11
/1

5/
19

12
/1

5/
19

12
/1

5/
19

12
/2

0/
19

1/
5/

20
1/

10
/2

0

D
el

eg
at

io
n/

In
ce

nt
iv

es
 D

es
ig

n
SL

-D
1

Sh
el

le
y

Te
st

ne
t

w
ith

 C
ry

pt
o/

Se
ria

lis
at

io
n

SI
-M

2

Fi
rs

t I
nt

eg
ra

tio
n

SI
-M

1

Se
ria

lis
at

io
n

SL
-D

12

C
ry

pt
o

In
te

gr
at

io
n

SL
-D

13

H
ar

d
Fo

rk
SL

-D
15

11
/1

5/
19

11
/1

5/
19

Le
dg

er
 S

pe
c.

Le
dg

er
 Im

pl
.

Te
st

in
g

Fi
gu

re
1:

Po
si

ti
on

in
g

of
th

is
D

el
iv

er
ab

le
(o

ut
lin

ed
in

re
d)

.

Engineering Design Specification
for Delegation and Incentives

in Cardano–Shelley
AN IOHK TECHNICAL REPORT

Philipp Kant
philipp.kant@iohk.io

Lars Brünjes
lars.bruenjes@iohk.io

Duncan Coutts
duncan@well-typed.com

duncan.coutts@iohk.io

January 10, 2023

Abstract

This document describes the requirements and design for a delegation and incentives
mechanism to be used in the Shelley release of Cardano.

List of Contributors

Lars Brünjes, Jared Corduan, Duncan Coutts, Matthias Güdemann, Philipp Kant, Dimitris
Karakostas, Aggelos Kiayias, Elias Koutsoupias, Mario Larangeira, Damian Nadales, Aikaterini-
Panagiota Stouka.

1 Purpose

Delegation will allow holders of ada to transfer their rights to participate in the proof of stake
(PoS) protocol to stake pools. Stake pools are run by stake pool operators (sometimes also called pool
leaders, though we try to avoid the term in this document to avoid confusion with slot leaders),
and a person delegating to a stake pool is called delegator, member, or participant of a stake pool.

Introducing delegation is important to increase the stability and performance of the system:

• We cannot expect every holder of ada to continuously run a node that is well-connected to
the rest of the network, in order to write a block on rare occasions. Some users might lack
the expertise to do so. Most users will not have enough stake to warrant running their
own node. Delegation allows all holders of ada to participate in the protocol, regardless of
their technical abilities and the amount of stake that they hold. Thus, we expect less stake
to be offline, making the system faster and more resilient against an adversary.

• Even if every user were to run a node that was online all the time, it would be hard
to keep all those nodes well enough in sync to avoid forks and still keep a short slot
length. Our delegation design is aimed at keeping the number of nodes that produce a
significant amount of blocks reasonably small (about 100 or 1000 nodes), so that effective
communication between them is feasible.

This document covers the design of necessary additions to Cardano in order to support and
incentivise delegation.

1

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 2

2 Requirements

The delegation mechanism should meet a number of requirements. They can be grouped into:

• functional requirements that the delegation system should provide;

• requirements to the security (both of the overall system and the funds of individual users);

• non-functional requirements; and

• existing features that should not be impeded when we add delegation to the system.

Requirements specific to the rewards distribution mechanism are discussed separately in
Section 3.9.

2.1 Functional Requirements

2.1.1 Proof of Eligibility

Any slot leader – and in particular stake pool operators, who are elected through stake that is
delegated to them – should be able to prove when they are eligible to produce a block in a given
slot.

2.1.2 Visibility of Delegation on the Blockchain

We enable stake pools to automatically share their rewards with the delegators. In order to do
this, there must be evidence for the delegation happening. Furthermore, we want the sharing of
rewards to be enforced by the protocol, so the evidence must be recorded on the blockchain.

2.1.3 Restricting Chain Delegation

We do not want to allow stake to be re-delegated along a chain arbitrarily. We can admit some
level of indirection, but not more than necessary to meet the rest of the requirements.

One reason that we do not want arbitrary chain delegation is that it makes it harder for
delegators to figure out who is ultimately controlling their stake. Another is that unlimited
chain delegation could open up a Denial-of-Service (DoS) attack vector on the system, where the
attacker posts long delegation chains in order to slow down processes that depend on delegation,
such as leader election or rewards sharing.

We must also have a mechanism to prevent cycles (such as A delegates to B, and B delegates
to A) which would introduce ambiguity to the question of who manages stake in the end.

2.1.4 Cheap Re-Delegation

Changing delegation preferences should be as cheap as possible (while still using appropriate
fees to prevent a denial of service attack on the blockchain).

2.1.5 Neutral Addresses

We should provide addresses that can hold value, but do not contribute to the PoS protocol.
Those might be appropriate for use by exchanges, which will hold large amounts of value,
without legally owning it.

2.1.6 Multi-Signature Addresses

We should provide addresses that can hold value that are owned by multiple people, such that
the signatures from a specified subset are required to spend from those addresses. This needs to
enable addresses where signatures are required from any N of a pre-determined set of M keys.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 3

2.1.7 Multi-Signature Delegation

We should provide the ability to declare that delegating the stake rights for certain funds should
require multiple signatures.

This should be as expressive as the multi-signature support for addresses. It should be an
independent choice: a multi-signature address can use a single signature for its stake rights, or a
different choice of multi-signature threshold N and key set M. Similarly, it should be possible to
require multi-signature only for delegation, not for spending from a given address.

2.2 Security Requirements

2.2.1 Sybil Attack Protection at Stake Pool Level

It is conceivable that an adversary might try to take over the network by registering a large
number of stake pools, hoping to accumulate enough stake to mount an attack just by people
randomly delegating to them.

This Sybil attack on the level of stake pools should be made infeasible, by requiring stake
pool operators to allocate a finite resource to each individual pool they register. In particular,
this resource cannot be the cost of operating a node, since it is possible to run multiple pools
with one node, so that cost would be constant in the number of pools an adversary is registering.

2.2.2 Address Non-malleability

The system should provide protection against the following attack:

Changing Delegation through Address Malleability Suppose that Alice makes a payment to
Bob. In preparation, Bob transmits an address belonging to his wallet to Alice, and expects
Alice to pay to that address. If his wallets later on shows that his balance is increased
by the expected amount, he considers that transaction to be successful. An attacker that
wants to increase their influence on the PoS protocol changes the address that Bob sends
in such a way that funds in that address are delegated to the attacker, but the funds still
show up in Bob’s wallet.

The attack is considered successful if the stake rights for the transferred money belong to
the attacker after the transaction, without Alice and Bob noticing the attack.

Note that the system should still allow for deliberately separating spending rights and the
right to delegate, just not in the covert way described above.

2.2.3 Public Payment Keys Should not be Disclosed Prematurely

Delegation of stake should not involve revealing the public payment key (other than the public
key hash, which is already visible from the address itself). The public payment key should only
be revealed once the funds that are controlled by the corresponding private key are actually
transferred to another address.

2.2.4 Mitigate Key Exposure

A node run by a stake pool will need to have some key that controls all the delegated stake, in
order to sign blocks. In case of an incident where the node is compromised, it should be possible
for the stake pool operator to revoke the key, and replace it with a new one. This should not
require any action by the delegators.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 4

2.2.5 Handle Inactive Stake Pools

We anticipate that some participants might not contribute to the proof-of-stake protocol –
whether they lost their keys, lost interest, etc. We want to minimise the effect of this to the
security and liveness of the system.

Note that this does not only concern large stakeholders or pool operators. The cumulative
effect of a large number of small stakeholders having their stake be inactive also has to be
considered.

2.2.6 Avoid Hard Transition

When we make the switch from Byron (where all stake is delegated to the nodes controlled by
the Cardano Foundation, Emurgo, and IOHK) to Shelley (where ada holders have the freedom to
control their stake), we should avoid a scenario where a significant amount of stake is suddenly
offline.

This could happen if we automatically revoked the automatic delegation to the core nodes
of the Byron network.

2.2.7 Change Delegation Without Payment Key

Users of a cold wallet, such as a paper wallet or a hardware wallet, should be able to delegate
the stake corresponding to the funds in the cold wallet without using its payment key.

2.3 Non-functional Requirements

2.3.1 Asymptotic space and time complexity

All the changes to delegation are changes in the rules that define what it means to be a valid
Cardano blockchain. These rules must be computable, and must be computable with reasonable
space and time complexity.

2.3.2 Minimise economic attacks

An economic attack on a system arises where the costs incurred by the operators of a system are
not covered by fees on the users of the system. Such situations allow users to impose costs on
operators without paying that full cost themselves. In severe cases this can lead to operators
dropping out and the system collapsing.

Cardano currently has transaction fees which are intended to cover the processing and long
term storage cost of transactions. There are no fees however for the memory cost of tracking
the current accumulated chain state, in particular the UTxO. In addition, the new mechanisms
introduced for delegation add additional state that must be tracked. Moving from federated
operation to fully decentralised operation may increase the incentive to exploit economic attacks,
so it is important to address the existing unaccounted operator costs as well as new costs.

2.4 Requirements to Preserve Existing Features

2.4.1 Master Recovery Key

The whole wallet should be recoverable from one single key (without any additional information,
such as the delegation preferences of the wallet).

The computational complexity of the recovery process should not be worse than logarithmic
in the number of addresses appearing on the blockchain, and linear in the number of addresses
in the wallet.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 5

2.4.2 Address Recognition

An HD wallet should be able to recognise its addresses in the UTxO, so that it can report balances
and transaction histories to the user.

2.4.3 Wallet should be Runnable on Independent Devices

Different user interfaces, running on different devices, should be able to access and control the
same wallet, without transferring state between them.

We will accept some degradation of behaviour when running the wallet on different devices:

• Both copies might generate the same fresh addresses

• There can be differences in the reported balance while there are transactions in flight
that only one of the two copies has knowledge of. In particular, when one copy sends a
transaction, that transaction will only affect the balance reported by the other wallet once
it is recorded on the blockchain.

• If the wallets use different delegation preferences, funds sent to the wallet might end up
being delegated to different pools.

2.4.4 Maintain Privacy

HD Wallets maintain some level of privacy by using multiple addresses that are not obviously
and publicly tied to the same wallet. Delegating stake should not necessarily link the addresses
in the wallet of a delegator.

2.4.5 Short Addresses

It is beneficient to have short addresses, for two reasons: addresses are user-facing, and overly
long addresses are burdensome for users. Also, every UTxO entry contains an address, so short
addresses reduce the memory footprint of the UTxO and the whole ledger state.

Adding delegation to the system should not increase the length of addresses more than
necessary. Ideally, we should use the opportunity of having to modify the address scheme to
come up with an address length that is even shorter than in Byron.

2.4.6 No lookup of old blocks

The current Cardano design allows, in principle, an implementation of a node that discards
blocks after a period of time so that it only needs to keep a limited number of recent blocks. This
is true in part because nothing in the existing validation rules requires looking up arbitrary old
blocks. All information necessary for validation can be accumulated in a running state, in a
foldl style. This is a useful design property to retain.

2.5 Design Goals

2.5.1 No Special Wallet for Stake Pool Operators

If possible, we would like to avoid a situation where stake pool operators are required to use
a special kind of wallet. Apart from registering their pool and running their own nodes, they
should be able to use the same wallet as anyone else, without any additional or restricted
features.

We expect that following this design goal will lead to less engineering effort, better maintain-
ability, and a better user experience for stake pool operators.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 6

3 Design of Delegation

3.1 Overview of Delegation

Delegation is a separation of the control over the movements of funds and the rights (and
obligations) in the PoS protocol that are associated with those funds. We achieve this separation
by modelling it in the address structure. We distinguish between payment addresses that determine
how funds can be spent, and stake addresses that define if and how the stake rights of those
funds take part in the PoS protocol. Coins belong to payment addresses. Each payment address
(optionally) refers to a stake address. This delegates the stake rights of any funds held at the
payment address to the corresponding stake address. The stake address delegates to a stake pool
that participates directly in the PoS protocol. Thus overall there are two steps to the delegation
of stake rights: a payment address refers to a stake address; and the stake address delegates to a
stake pool.

We support multi signature (multi-sig) schemes, for payments as well as for delegations.
We do this by allowing value addresses and stake addresses to use either keypairs, or scripts
for authorisation, and implementing a simple scripting language to describe multi-sig schemes.
Introducing multi-sig in this way has the benefit of naturally generalising when we will later
introduce more powerful scripting languages, such as Plutus and Marlowe.

Participating in the PoS protocol requires two steps:

Using a registered stake address Users can post certificates to the chain to register a stake
address. This will allow them to delegate funds associated with that address, and also
automatically set up a corresponding reward account, where the system will accumulate
rewards for delegating funds from that stake address.

Delegating from that stake address to a registered stake pool All blocks in Cardano-Shelley
will be produced by a set of stake pools that need to be registered on the chain, by posting
an appropriate certificate. Individual stakeholders can delegate funds from each of their
registered stake addresses to a pool of their choosing. Stake in an address that delegates to
a pool counts to the stake of that pool in the leader election. The pool will be rewarded for
block production, and those rewards will automatically be distributed to the apropriate
reward addresses.

Note that this does not restrict an individual stakeholder wanting to use their own stake
to produce blocks (“self delegation”). Such users should register a private stake pool, and
delegate their own funds to that pool. This uniform architecture, not distinguishing
between those stakeholders that are using their stake directly and those that are delegating,
reduces the overall complexity of the system significantly.

Registration of stake addresses and delegation are optional, but it is the only way to exercise the
stake rights to take part in the PoS protocol and to earn rewards.

Rewards to pools and their members follow the scheme described in Section 5. In designing
the rewards system, we were careful to avoid incentivising selfish behaviour, and to encourage
cooperative behaviour instead. The rewards that a pool will get for producing blocks depend
on how much stake they control, and on how well they perform when producing blocks. Stake
pool operators can influence how the rewards for the pool are split amongst its members, by
setting parameters in the stake pool registration certificate. Wallets will assist users in making
rational choices and delegating to pools that are expected to give the best rewards.

3.2 Addresses and Credentials

In Shelley, an address has to provide information on two things: how tokens can be spent, and
how the associated stake is controlled. To separate those two concerns, we distinguish between
payment addresses Ap and stake addresses As.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 7

Addresses are objects that have a user-facing binary representation (they appear in the UTxO,
and users can inspect them using a wallet or explorer). They contain credentials that govern
access rights; using an address (such as spending from a payment address, or delegating funds
associated with a stake address) requires a witness for the credential (which is specific to the
particular transaction). There are two different kinds of credentials:

Key Credential A credential can be constructed from a pair (sk, vk) of a signing key sk and
corresponding verification key vk. The credential is a cryptographic hash H(vk) of the
verification key.

A witness for a key credential consists of the verification key vk, and a signature of the
transaction from the signing key sk.

Script Credential Tokens and stake can also be controlled by a validator script, which can either
succeed or fail to validate on a given input. In this case, the credential is the hash of the
script.

A witness for a script credential is the script itself, as well as input to the script that makes
it validate.

In future releases, we will add multiple languages to Cardano, with Plutus being the most
prominent example. In Shelley, script credentials will only be used for the purpose of requiring
signatures from multiple parties, a process known as multi signature, or multi-sig. For this,
Cardano-Shelley will feature a minimalistic scripting language capable of expressing the require-
ment of having a specified subset of a given set of keys provide a signature. Examples include
M of N schemes, where a transaction can be authorised if at least M distinct keys, from a set
of N keys, sign the transaction. By introducing multi-sig script credentials, in Shelley, it will
be possible to require single or multiple signatures both for the spending of funds and for the
delegation of stake, independently.

For the case of multi-sig scripts, a witness contains the validator script matching the hash in
the script credential, and a set of witnesses for individual key credentials. The validator script
will determine whether those witnesses are sufficient for the funds to be spent. For details, and
an example of a multi signature scripting language, see [CG19].

Shelley Address

Payment Address

Byron Address Payment Credential

Stake Address

Stake Credential

Payment Verification
Key Hash Script Hash

Stake Address Reference

By Value By Pointer null Stake Verification
Key Hash Script Hash

Figure 2: Addresses and Credentials

Figure 2 shows the anatomy of both payment and stake addresses. Let us first consider a
Stake Address: it contains a stake credential (which can be a key credential or script credential).
A stake address is used for two purposes: delegating stake (see Section 3.3.6), and spending
rewards accumulated in a reward account (see Section 3.5.2).

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 8

Payment Addresses have more structure: first of all, we have the two cases of Byron and
Shelley addresses. The purpose of Byron addresses is backwards compatibility. Byron addresses
have no notion of stake, so it is not possible to delegate from a Byron address; users will have to
transfer funds to a Shelley address first.

A Shelley address contains a payment credential (again, either a key or script credential).
A transaction that consumes a UTxO entry with a Shelley address will need a witness for its
payment credential in order to be validated. In addition, a Shelley address also contains a
stake address reference. When calculating the stake distribution (see Section 3.4 for details), the
system uses this reference to decide where to count the stake corresponding to the tokens in this
address.

There are three options for the stake address reference in a Shelley address: it can be provided
by value, i.e., just be the hash of a verification key or validator script. Shelley addresses that
provide their stake address reference by value are sometimes also called base addresses.

There is also a more compact way of representing a stake address reference: since stake
addresses need to be registered on the chain in order to be considered for the stake distribution
(see Section 3.3.3), we can also include them by pointer, pointing to the certificate that regis-
tered it. Since the blockchain orders transactions, this pointer is quite small, containing only
three numbers (slot index, transaction index within the block, and certificate index within the
transaction). Shelley addresses that contain their stake by pointer are also called pointer addresses.

The third possibility is to not have a stake address reference at all. In this case, the stake
corresponding to the tokens in the address is not considered by the system at all (just as for a
Byron address). In particular, it will not be counted towards the active stake (Section 3.4.3), and
so will not slow down chain growth. Users who do not wish to contribute to the PoS protocol
should use this option. Such addresses are also called enterprise addresses.

3.2.1 On Pointer Addresses

Allowing the stake address reference to be included in a payment address via pointer allows
for shorter addresses, which is a requirement (Section 2.4.5). However, there are also some
subtleties to consider.

3.2.1.1 Invalid Refereces

First, we need to consider the case that the pointer does not point to an active stake address
registration. This covers the case that the key was unregistered after (or indeed before) the
transaction, and also covers pointers to targets that are plainly invalid. The system will allow
transactions to and from such addresses, but their stake will not be considered for leader election
and rewards.

Note that in particular, when a pointer address becomes invalid because the stake address it
points to is deregistered, registering the same stake address again does not “restore” the stake in
the pointer address; the tokens have to be moved to another address in order to use the stake.
This minor limitation allows the system to not remember unregistered stake addresses. Maybe

add
a dia-
gram
here,
about
the life-
time of
pointer
ad-
dresses.

So, to exercise the stake rights of a pointer address, the stake address must be registered
in advance of using the pointer address in the output of a transaction, and the stake address
must remain registered while the pointer address holds funds. This is a difference compared to
addresses that contain their stake address reference by value, where the stake address can be
registered after the value address is used in a transaction.

3.2.1.2 Pointer Addresses and Rollback

A special case of an invalid pointer is a rollback: when the block containing a stake address
registration certificate gets rolled back, addresses containing the stake address by pointer to

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 9

that certificate will lose their stake rights. Since the addresses will remain valid for payments,
though, the stake rights can be restored by moving the funds to another address. Wallets can try
to avoid this situation, as described in Section 4.4.

3.2.2 On Enterprise Addresses

Enterprise addresses carry no stake rights whatsoever and thus using them allows completely
opting out of participation in the proof of stake protocol. Exchanges or other organisations that
control large amounts of ada – but hold it on behalf of other users – may wish to follow a policy
of not exercising stake rights. By using enterprise addresses, exchanges can demonstrate that
they follow this policy. Since enterprise addresses are not associated with any stake address, they
are automatically excluded from the mechanisms that influence the slot leadership schedule.

Note that using addresses with no stake rights effectively decreases the total amount of
stake, which plays into the hands of the adversary. But unless we want the exchange to control
the stake, it is unavoidable to ignore it, since there is no way to determine whom the stake
”really” belongs to. Also note that it is generally considered bad practice to leave funds on
exchanges, and in Cardano-Shelley, there will also be a monetary incentive to withdraw funds
from exchanges in order to earn rewards.

3.2.3 Reward Accounts

Reward accounts are used to distribute rewards for participating in the PoS protocol, as described
in 3.9.1. They have a number of interesting properties:

• They use account-style accounting, not UTxO-style.

• They can not receive funds via transactions. Instead, their balance is only increased when
rewards are distributed.

• A reward account is not related to a value address, but to a stake address. Thus, spending
from a reward account requires a witness for a stake credential, rather than a payment
credential.

Rewards can be “withdrawn” from a reward account, by using the reward account as an
input to a transaction. Note that we will still require at least one UTxO style input in this
transactions for replay protection, as explained in Section 3.3.2. Stake associated with funds in
a reward account will contribute to the stake of the stake address, so there is no incentive to
frequently withdraw rewards.

3.2.4 On Byron Addresses

In Byron, all addresses were interpreted as having stake rights, but those stake rights were
always delegated to a fixed set of keys specified in the genesis block, controlled by the Cardano
Foundation, Emurgo, and IOHK.

Byron addresses continue to exist in Shelley, but their interpretation is changed subtly and
their use is disincentivised. Their interpretation is changed from having stake rights with forced
delegation, to having no stake rights whatsoever. Their use is disincentivised, since owners have
the option to move their funds into the new base or pointer addresses that have stake rights,
which can be exercised to receive rewards.

It is worth noting that initially, Byron addresses and enterprise addresses have essentially
identical behaviour. This might change in the future, if new features are added to enterprise
addresses.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 10

3.2.5 HD Wallet Structure in Shelley

Shelley addresses with a verification key hash as payment credential support hierarchical deter-
ministic wallets, as per BIP-32 [Wui12]. For value addresses with a multi-sig script credential,
we can use a slight generalisation of BIP-45 [ACG14]. Lay out

the nec-
essary
general-
isation
of BIP-
45

In particular, this kind of wallet scheme allows implementations that can do wallet restoration
from seed in time that is logarithmic in the total number of addresses on the blockchain. For
details, see Section 3.13.

3.2.6 Address Recognition

Wallets will recognise addresses (other than reward addresses) that belong to them just as they
would without delegation, by looking only at the payment credential (see Section 3.13 for how
to find addresses efficiently).

Finding the stake credentials of a wallet (and in particular the corresponding reward ac-
counts) can be done either by just reading off all the stake credentials of addresses found via their
payment credentials, or by performing a second search, this time over all the registered stake
addresses1. The former option is quicker and easier to implement. However, it is conceivable to
construct addresses where the payment credential belongs to one wallet, but the stake credential
belongs to another. The stake credential of such addresses would only be found by the wallet
that controls it via a dedicated search on the registered stake addresses.

Once a wallet recognises an address via its payment credential, it will read its stake credential,
and check whether it is set according to the current delegation preference of the wallet. If there
is a discrepancy, it will alert the user, and ask them whether they want to re-delegate according
to their current delegation preferences.

This check protects against the malleability attack in Section 2.2.2. It does so not by making
it impossible, but by ensuring that the users are aware of it. This design also covers the case of
users simply changing their delegation choice but subsequently receiving payments to addresses
they handed out previously that use the previous delegation choice.

3.3 Certificates and Registrations

3.3.1 Certificates on the Blockchain

The registering of stake addresses and stake pools, and delegating, involves posting appropriate
signed registration and delegation certificates to the blockchain as part of the set of certificates
included in transactions. This makes the certificates part of the blockchain, which means that
they are are publicly announced to all participants.

Certificates will remain valid until explicitly overwritten or revoked, as an automatic expiry
would likely increase the amount of undelegated, offline stake. The following certificates can be
posted to the blockchain:

• Stake address registration certificate

• Stake address de-registration certificate

• Delegation certificate

• Stake pool registration certificate

• Stake pool retirement certificate

There is one form of certificate which is not posted to the blockchain in advance, but is presented
when it is used:

1As explained in Section 3.3.3, stake addresses need to be registered on-chain.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 11

• Operational key certificate

Although this last kind is similar to delegation certificates in that it uses one key to grant the
right to sign blocks to another key, it is quite different from the other certificates which are used
to define the delegation relation. Operational key certificates are used by stake pool operators as
a safety measure to mitigate key theft (see Section 3.3.7), not to delegate stake rights between
different entities.

Figure 3 shows the relationships between the different types of certificates and keys. Dashed
arrows represent relationships between the different keys and addresses: the owner(s) of a stake
address delegates their stake rights to the owner of a stake pool cold key, using a delegation
certificate. The owner of a cold and hot key grants the stake rights of their cold key to their hot
key, using an operational key certificate. Incoming solid arrows represent the components of a
certificate. For instance, a delegation certificate contains the stake address of the delegator, and
the (hash of the verifying part of the) stake pool key.

Stake pools use a number of keys: a stake pool is controlled using the pool key pair (skpool, vkpool).
As explained in Section 3.3.7, this should be a cold key, kept on a secure machine, and only used
to issue stake pool registration and operational key certificates.

Producing a valid block will require an operational key certificate, signed by skpool, and a
witness for the block from the operational key specified in the certificate. Since operational keys
use key evolving signatures (KES), an operational key is also referred to as a KES key.

In addition, the leader election process in Ouroboros Praos requires a verifiable random
function, or VRF key pair (skVRF, vkVRF), which is needed to prove that a pool has won its private
lottery for a given slot. The hash of the verification part H(vkVRF) of this key is contained in the
pool registration certificate. Subsequent sections provide more details.

Stake
address

Stake pool
key (cold)

KES key
(hot)

Stake
address

registration

Stake
address

retirement

Pool
registration

Pool
retirement

Delegation
certificate

VRF Key
Operational

key
certificate

Delegates
stake rights

Grants
stake rights

Figure 3: Relationships between the keys, addresses, and certificates

3.3.2 Certificate Replay Prevention

Unlike transactions, which inherently cannot be replayed due to the nature of the UTxO account-
ing model, the certificates need an explicit mechanism to prevent replays. The danger otherwise
would include examples such as when a user switches away from a stake pool by posting a new

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 12

delegation certificate, the old stake pool reposts the original delegation certificate, effectively
thwarting the user’s attempt to delegate to another stake pool.

The solution we employ is to borrow an idea from UTxO witnesses and to piggy-back on
the inherent replay protection of the rest of the transaction. A UTxO witness for an input
is a signature on the entire transaction body, which includes all inputs and outputs (but not
witnesses, which would be circular). This means the signature can only be reused on the same
transaction, and due to the nature of UTxO accounting, the same transaction cannot be included
in the ledger again. For certificates, we do essentially the same thing: the witness for a certificate
is a signature (or script input) for not just the certificate, but for the entire transaction body. This
means that, provided the transaction spends at least one input, we inherit the inherent replay
protection of UTxO accounting. The validity rules for transactions will explicitly require each
transaction to have at least one UTxO entry as an input, so that certificates will be protected
from replay in this way.

Why do we need to explicitly require a UTxO input? Won’t the need to pay transaction fees
always implicitly require this anyway? There are two additional sources of funds that could
pay for the transaction fees: refunds and the contents of a reward account. So it is possible to
create transactions that contain enough value to pay transaction fees even without consuming a
UTxO entry. Such a transaction, if valid, could be replayed at a later point in time. In order to
have all transactions (and by extension, all certificates), be protected from replay attacks, we
will explicitly require at least one UTxO entry as an input to any transaction.

3.3.3 Stake Address Registration Certificates

Users wishing to exercise their rights of participation in the PoS protocol can register a stake
address by posting a stake address registration certificate to the blockchain.

Stake address registration certificate This certificate contains a stake address. The credential
can either be a key credential, or script credential, as explained in Section 3.2.

We do not require a witness to register a stake address (besides, of course, any witnesses
needed for the transaction that is used to post the certificate).

Stake address de-registration certificate This certificate contains the stake address that should
be de-registered.

The certificate requires a witness for the stake address that should be de-registered. As
stated in Section 3.2, this will either be a key or script witness, depending on the type of
credential of the address.

Registering a stake address introduces a corresponding reward account. The account is
deleted when the stake address is de-registered. See Appendix A.3.3 for details on reward
accounts.

In addition to a transaction fee, registering a stake address requires a deposit, as explained
in Section 3.10.2 and Appendix B. The deposit is to account for the costs of tracking the stake
address and maintaining the corresponding reward account. It also incentivises de-registering
stake addresses that are no longer required, so that the corresponding resources can be released.

3.3.4 Stake Pool Registration Certificates

A person planning to operate a stake pool (including a private pool) can declare their intent by
posting a stake pool registration certificate to the blockchain.

Stake pool Registration Certificate The certificate contains the following:

• The hash of the verification part of the (cold) pool key, H(vkpool).

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 13

• The hash of the verification part of the VRF key, H(vkVRF).

• A stake address As,reward, called the reward address for the pool. Usually, this will be
a registered stake address, controlled by the pool operator. The rewards for the pool
operator will be paid to the reward account of As,reward

2.
If a pool operator wants to donate their rewards to a charity, they can do so by using
a stake address that is controlled by that charity as the reward address. They can
then advertise to other stakeholders that they are doing so (although evidence that
the stake address does indeed belong to the charity has to be provided out of band).
Should the reward address be unregistered, the stake pool operator will be unable to
receive rewards. In that case, any rewards that they would be due are instead sent
back to the reserves (but the stake pool members would still get their usual rewards).

• A list of stake addresses controlled by the pool owner(s), As,owner. If any of these
owner stake addresses delegate to this pool, the stake that they delegate will be counted
towards the stake pledged to the pool by the owner(s), see Sections 4.1, 5.1 and 5.5.
Note that adding a stake address to the set of owner stake addresses in itself does
not actually delegate the stake controlled by that address to the pool – this requires
posting an ordinary delegation certificate to the chain.
During reward distribution, there will be no rewards paid to the reward accounts of
the owner stake addresses. Instead, the stake delegated by all owner stake addresses
will be counted as the stake contributed by the pool owner(s), and their reward will
be paid to the reward account of the reward address.

• The parameters that specify the reward sharing function of the stake pool: cost,
margin, and amount of stake pledged to the pool by the owner(s), see Sections 4.1
and 5.3.

• A list of IP addresses and/or DNS Names of public relay nodes that the stake pool
operator provides to support the Cardano network.

• Optionally, a URL and content hash for additional metadata about the pool, for
display in the wallet. The URL is restricted to a length of 64 bytes. It is the obligation
of the stake pool operator that this URL points to a JSON object containing the
metadata of the pool, as described in Section 4.2. The content hash of that JSON object
should match the content hash in the registration certificate.
If no URL and content hash is provided, the stake pool will not be listed in wallets.
Private pools (Section 4.6) will use this option.
Also, if there is a mismatch in the content hash, the pool will not be displayed. If
a stake pool operator changes the metadata, they have to post a new stake pool
registration certificate with the new content hash.

Validating the certificate requires witnesses from all owner stake addresses, as well as a
witness for the pool key.

If a stake pool can foresee that it will cease to operate, it can announce this intent by posting
a stake pool retirement certificate.

Stake pool Retirement Certificate It contains

• The public key hash H(vkpool) of the pool.

2We do not want to associate the reward account with the key of the pool itself. An important reason for this is
that for security reasons, stake pool operators are required to use operational keys as described in Section 3.3.7, while
storing the key of the pool securely offline. Requiring the pool key for withdrawing rewards would be detrimental to
this.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 14

• The epoch number, starting from which the stake pool will cease to operate.

It requires a witness for the pool key skpool (particularly, it need not be signed by any of
the pool owners).

After the retirement epoch, any stake that is delegated to this stake pool will be disregarded
for the PoS protocol. It will not take part in the leader election process (similarly to how
stake in an enterprise address is not considered during the election process).

Stakeholders who delegated to this pool should be notified and asked to redelegate by
their wallet the next time they are online.

3.3.5 Single Operator, Possibly Multiple Owners

Note that there is a conceptual difference between the stake pool operator and stake pool owners:

Stake Pool Operator This is the person who operates the pool – owns or rents a server, holds
the key of the pool, runs and monitors the node.

Stake Pool Owner This is a person pledging stake to the pool, increasing its rewards and
desirability. The ability for the owner to pledge stake is providing protection against the
pool-level Sybil attack (requirement 2.2.1, see also Section 4.1).

Usually, the stake pool operator and owner will be the same person, but a stake pool can
also have multiple owners. This is to allow people to coordinate and form a stake pool even if
none of them had enough stake on their own to make a pledge that would make the stake pool
competitive.

Still, there will only be one operator, the person holding the key of the stake pool itself. In
addition to signing blocks, this key also holds the power to retire the stake pool, or to post
updated registration certificates without the keys of all owners (in which case some of the
owners are kicked off the stake pool). Also, the rewards for all owners will be paid to the reward
account associated with the reward address of the pool, and it will be the responsibility of the
person(s) owning that address (usually the pool operator) to distribute the rewards amongst
the owners. That is a conscious design decision: collaborating to form a stake pool should
require significant trust between the owners. Otherwise, everyone could choose to become a
co-owner of a stake pool instead of delegating, which would render the mechanism of pledging
stake ineffective. Allowing the operator to shut down the pool, kick other owners off, or fail to
distribute rewards raises the threshold of necessary trust that owners of the pool must have in
the operator.

3.3.6 Delegation Certificates

Users can transfer the rights of participation in the PoS protocol from their stake address to a
stake pool, by posting a delegation certificate to the blockchain.

Delegation Certificate A delegation certificate is a tuple containing

• the stake address delegating its stake rights, As,source

• the stake pool verification key hash to which stake is delegated, H(vkpool)

Posting a delegation certificate requires a witness for the delegating stake address As,source.

Note that there is no corresponding delegation revocation certificate. If a user wishes to
change their delegation choice to a different stake pool (which might be their own private
stake pool), they can simply post a new delegation certificate. Also, the delegation certificate is
revoked automatically when the source stake address is de-registered.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 15

3.3.7 Operational Key Certificates

Stake pool operators must use a hot/cold key arrangement to mitigate key exposure (see Sec-
tion 2.2.4). A hot, or operational, key is kept online, and is used to sign blocks, while the cold
key is kept securely offline. This requires an operational key certificate to create a (1-link) chain of
trust from the cold key to the hot key, allowing this hot key to participate in the PoS protocol.
Should the hot key become compromised, the stake pool operator should immediately create a
new operational key certificate, and switch to a new key.

If the operational key certificates would be included in the ledger, as the other certificates are,
this would present a problem for block validation. Consider the following example: suppose
that the network layer wants to validate a batch of 10 block headers from the current epoch,
before deciding if it wants to also download the block bodies. Can it tell if those block headers
are signed by the right actors?

In this situation the network layer has the state of the ledger up to but not including these
next 10 block headers. So it cannot rely on any information in the 10 corresponding block bodies.

Without this information, the validity of the hot key that signed the headers cannot be
verified. If the network layer sees one of the 10 new blocks signed by a hot key it doesn’t
recognise, it might be because there is a delegation certificate in the block bodies (which the
network layer has not seen yet), that shows that the key is valid because some stake pool key
deferred its stake rights to it. Similarly, if the network layer sees a known hot key, how can it
know that it is still valid? There could be a new certificate in the block bodies that defers the
rights of this key to a different one (which would invalidate the key the network layer saw).

To address this problem, a new type of certificate is introduced: operational key certificates.
These certificates are provided in the block header itself, as part of the witness, thus solving the
problem of determining the precedence of hot keys. In other words, operational key certificates
are not included in the ledger, but instead they are included in a witness by stake pools at the
point of exercising stake rights including:

• signing blocks

• signing votes for protocol update proposals (once the update and voting system is in
place)

An operational key certificate, signed by the stake pool’s cold key, delegates to the hot key
that is used to sign messages in the protocols (block header or vote). This operational key
certificate is included in the message so that all other nodes can verify that the message is signed
by a legitimate delegate of the owner of the cold key3.

Specifically, an operational key certificate specifies that the stake rights are transferred from
a cold stake pool key vkpool to a hot key vkhot. They are included in the message (e.g. block
header) and the message itself is signed with skhot.

Operational keys will use key evolving signatures (KES). To be precise, we will use keys
according to the MMM scheme [MMM01], regular evolutions after a number of slots that
correspond to one day, and a key lifetime of 27 = 128 days, a little over three months.

Operational key certificates will have a lifetime of 90 days after which they become invalid,
to encourage pool operators to regularly rotate their operational key. The certificate will specify
a slot from which it will be considered to be valid for 90 days.

In detail, the hot/cold key setup is as follows:

• The stake pool operator registers their stake pool, using a cold stake pool key vkpool. This
cold key is kept securely and off-line.

3This is much the same setup as with TLS certificates: there are known root certificates, but the server’s operational
certificate is presented inband.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 16

• The stake pool operator uses skpool to sign an operational key certificate C, transferring the
stake rights to a hot key vkhot.

• The stake pool operator keeps skhot, as well as C, on a node that is on-line, and can sign
blocks. A block signed with skhot will be considered valid, provided that C is included in
its header.

• Should the node get hacked, and the hot key compromised, the stake pool operator will
create a new operational key certificate C′, delegating the stake rights to a new hot key
vkhot′ .

In order to render skhot useless, it must be established that C′ takes precedence over C. For
this purpose, the operational key certificate will have an additional integer field, and certificates
with a larger value for this field will take precedence.

3.3.8 Certificate Precedence and Validity

The following rules determine precedence and validity of certificates. In particular, they describe
what happens when multiple certificates are issued for a given stake pool key.

The ordering of blocks and transactions induces a canonical ordering amongst certificates.
Thus, the terms older/newer certificate are well defined and are used below.

3.3.8.1 Stake Pool Registration and Retirement Certificates

• There can be at most one active stake pool registration certificate for any given stake pool
key. A newer certificate will override an older one.

This will allow stake pool operators to update their costs and margin if they need to4.

• A revocation certificate is only valid if there is an older registration certificate.

3.3.8.2 Delegation Certificates

Newer delegation certificates override older delegation certificates. This allows delegators to
move from one stake pool to another.

3.3.8.3 Operational Key Certificates

For operational key certificates, we cannot rely on the ordering induced by the blockchain. But
we do have the counter field, which serves the purpose of establishing precedence:

• An operational key certificate with a higher counter overrides one with a lower counter.

• Also, we require that within any given chain, if there are two blocks A and B signed using
operational key certificates issued by the same cold key, if A is an older block than B, the
counter in the operational certificate in the cert in the header of B must be at least as large
as the one in the counter in the operational certificate in the header of A.

4Stake pool members should be notified of such changes by their wallet the next time they are online, if this makes
the pool less desirable, see Section 4.3.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 17

3.4 Delegation Relations

As stated in the delegation overview: delegating stake rights involves two indirections: from
payment addresses to stake addresses, and from stake addresses to stake pools.

Equivalently, there are two relations: a relation between payment addresses and stake
addresses, and a relation between stake addresses and stake pools. The first relation can be read
off payment addresses, by looking at their stake address references. The second relation consists
of registered stake addresses, registered stake pools and delegation certificates as the entries
relating the two.

3.4.1 Address Delegation Relation

The address delegation relation is a relation between payment addresses and registered stake
addresses.

This relation can be defined in terms of the current UTxO and the current set of registered
stake addresses. For all Shelley addresses in the UTxO, the stake address is determined by the
stake address reference – either directly by value, via a pointer to a stake address registration
certificate, or as null. This needs to be filtered by the current set of registered stake addresses.

3.4.2 Stake Pool Delegation Relation

The stake pool delegation relation is a relation between registered stake addresses and stake
pools.

The relation is defined by the active set of delegation certificates, filtered by the set of active
stake pools. The active delegation certificates already exclude those where the source stake
address has been de-registered (since a delegation certificate is revoked automatically when the
stake address is de-registered).

3.4.3 Overall Stake Distribution

Ouroboros [KRDO17] requires a stake distribution to use as the basis of defining the slot leader
schedule for the next epoch.

The overall stake distribution is the set of all registered stake pools and their aggregate stake
from all addresses that are delegated to them.

This can be defined by taking the composition of the address delegation relation and the
stake pool delegation relation, giving the relation between payment addresses and stake pools.
The final distribution is formed by taking the transaction outputs from the UTxO and selecting
all the payment addresses related to each stake pool and aggregating all the coins.

Note that defining the stake distribution in this way is in contrast to using the Follow the
Satoshi algorithm. This definition automatically excludes all addresses that hold no stake, and
excludes addresses that have stake rights, but which have not correctly registered their stake
address or delegation certificate.

We will call stake that is correctly delegated to an existing pool active stake, sometimes
contrasted to the total stake, which includes stake that is not delegated (or delegated to pools
that are already retired).

3.4.4 Chain Delegation

Chain delegation is the notion of having multiple certificates chained together, so that the source
key of one certificate is the delegate key of the previous one.

While the delegation research paper in principle allows a significant degree of flexibility
with delegation, our chosen design is quite restrictive and uses a fixed pattern of delegation.

We will only allow a very simple form of chain delegation, where we have the following, in
order:

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 18

1. a stake address

2. a delegation certificate; and

3. an operational key certificate.

This restricted pattern of chain delegation allows us to satisfy all requirements, but avoids
problematic cycles in the graph of delegation certificates, and makes it simple for nodes to track
the delegation.

3.5 State Tracking for delegation

It is not sufficient for certificates to be posted to the blockchain. Nodes need ready access
to certain parts of previously posted information as part of the protocol execution or ledger
validation. For example, since nodes need to validate signatures on new blocks in a timely
manner, they need ready access to information about the registered stake pools (including
operational key certificate validity).

One of the design goals is to avoid having to look up old entries on the blockchain, since we
want to allow implementations that forget old blocks. Instead, we want a foldl design where
nodes keep track – as local state – of all the information they will later need.

The following sections describe the local state that nodes must maintain as they process
transactions in blocks.

3.5.1 Stake Addresses

The set of active stake addresses must be tracked. This contains the stake credentials from each
stake address registration certificate. The set is uniquely indexed by the hash itself (of either
the verification key, or script, depending on the type of credential). It is also uniquely indexed
by the location on the blockchain of the stake address registration certificate, using the same
location type as pointer addresses.

This set is updated when stake addresses are registered and de-registered. This state is
consulted when validating and applying transactions that withdraw from reward accounts, to
retrieve the stake credential.

3.5.2 Reward Accounts

For each stake address, there is an associated reward account. The lifetime of these accounts
follows exactly those of their associated stake address.

The reward accounts are a mapping from a stake address to their current balance. The stake
address is the unique index for the mapping.

The accounts are updated in bulk following the end of an epoch. They are consulted and
updated when validating and applying transactions that withdraw from reward accounts. See
Section 3.2.3 and Section 3.9.1 for details.

3.5.3 Stake Pools

The set of active stake pools must be tracked, uniquely indexed by the public key hash of the
stake pool.

In addition, a small amount of state needs to be maintained to validate operational key
certificates. The state tracked for each stake pool includes an integer representing the highest
counter field seen so far in a valid certificate. This is consulted to validate operational key
certificates, and updated when larger counter values are presented in a valid certificate.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 19

3.5.4 Active Delegation Certificates

Active delegation certificates are tracked, as a finite map from stake address to pool verification
key hash.

3.5.5 Stake per Stake Address

For the purpose of leader election and reward calculation, the system needs to know how much
stake each registered and delegating stake address actually controls. The total stake of a stake
address is calculated as the sum of all funds that are

• in value addresses referring to this stake address in their stake address reference (by value,
or by pointer, as long as the pointer points to a stake address registration certificate that
was already valid when the value address received funds, and has not been de-registered)

• in the reward account of that stake address

3.6 Slot Leader Schedule and Rewards Calculation

The process of leader election has to be modified to take delegation into account.
While adding blocks to their chain, nodes will keep track of the pieces of state listed above.

When it is time to prepare the slot leader schedule for the upcoming epoch, they will look at a
past snapshot of that state, from slot sstakedist, the slot from which the stake distribution should
be used to compute the slot leader schedule and rewards for the next epoch5.

The nodes will use the state from slot sstakedist to

• compute the stake distribution (i.e., the amount of stake per stake pool)

• create the leader schedule by sampling the stake distribution (i.e., sampling the stake
pools, weighted by the stake they control)

• retain this state, to use it for the reward calculation at the end of the epoch6.

3.7 Block Validity and Operational Key Certificates

Stake pool operators will use operational key certificates in order to protect the key to which
their members delegated. A block for a slot where the VRF key vkVRF has been elected as leader
(the proof of which is to be constructed using skVRF, and to be included in the block header) will
be considered valid by all nodes if

• there is a stake pool with (cold) pool key vkleader, which list H(vkVRF) as the VRF key hash
in its pool registration certificate

• the block is signed by skhot and contains, in its header, an operational key certificate from
skleader to skhot.

• The counter of the operational key certificate must not be smaller than the counter of the
operational key certificate used to sign the last block of vkleader.

5The detail of which slot is used as sstakedist depends on the variant of the Ouroboros protocol that is used. It
needs to be deep enough in the chain to be stable. It also needs to be before the point in time at which the random
seed for the slot leader election is determined, to prevent a grinding-type of attack. Note that sstakedist does not
necessarily have to be in the current epoch.

6They cannot calculate those rewards immediately, because they depend on the efficiency of the pools during the
following epoch. However, they could, alternatively to retaining the whole delegation state, calculate the rewards up
to the factor that depends on the efficiency.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 20

In case there are more than one block for the current slot, for the same pool, each of which are
signed using an operational key certificate, the newest certificate (as per the included counter)
takes precedence.

Note that nodes take the precedence amongst operational key certificates into account only
after comparing the length of the chains. When the node is already up to date and receives
two conflicting blocks that add to its current chain, the length will of course always be the
same. But this rule is important: if we did not compare the lengths of the chains before giving
preference to the block with the newer operational certificate, it would be possible to force a
node to do a rollback of arbitrary length, by sending it a block from a past slot, signed using a
newer certificate than the block that the node already has in its chain for that slot. This would
open up an attack where a stake pool operator could force nodes to do arbitrary rollbacks.

3.8 Transition to Decentralization

In order to guarantee system stability, we must be sure that stake pool operators are “doing their
job” sufficiently well before relinquishing control to them. Instead of having a simple “switch”
from a centralized system controlled by a handful of bootstrap keys to a fully decentralized one,
we propose a transition phase.

3.8.1 Motivation

Cardano chain growth quality is only guaranteed when for all time windows of 2k slots, a block
has been created for at least k slots, where k is the security parameter of the protocol. At the
moment, the bootstrap nodes are responsible for block creation, but in a fully decentralized
system, this will be the pool operators’ responsibility.

In the beginning, there might be technical problems or other issues preventing the pool
leaders from creating sufficiently many blocks, so we want to make the transition gradual, mon-
itoring system performance and being able to temporarily delay or even revert decentralization
in case of an emergency.

Another consideration is the amount of stake that is necessary to mount a 51% attack on the
system. Since participating in the PoS protocol requires an action on behalf of the stakeholders –
registering a stake address and delegating – it is not unreasonable to expect that it will take some
time until a significant fraction of the overall stake becomes active and starts contributing to the
protocol. An attacker might use this window of opportunity to attack the system. A gradual
handover of the protocol from the initial core nodes to the actual stakeholders will protect the
integrity of the blockchain.

3.8.2 Proposal

We propose to introduce a new parameter d ∈ [0, 1], which controls the ratio of slots created
by the bootstrap keys – all other slots will follow the rules outlined in this specification. So
d = 1 corresponds to the present “bootstrap era” state, whereas d = 0 corresponds to full
decentralization as described in this document. Starting with d = 1 and gradually going down
to d = 0 allows for a smooth transition period.

For a given value of d, the system will perform two steps to create the leader schedule for
the next epoch:

• Perform leader election amongst the new nodes, according to Ouroboros Praos, for all ns
slots in the epoch.

• Randomly select dns slots of the epoch. Let us call those the slots the OBFT slots of that
epoch. For the OBFT slots, the Praos leader schedule will be overridden, and the old core
nodes will be responsible for creating blocks for theses slots.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 21

In order to keep the block frequency constant, we will select a fraction f of the OBFT slots,
where f is the active slots coefficient from Praos7 (Equation (1) in [DGKR17]), and call
those the active OBFT slots of the epoch.

For OBFT slots, we will modify the behaviour of all nodes as follows:

– No stake pool node shall create a block for an OBFT slot.

– For non-active OBFT slots, no node shall produce a block at all – neither one of the
old core nodes, nor one a stake pool node.

– Also, for the non-active OBFT slots, no block shall be considered valid by any node.

– For the active OBFT slots, the old core nodes will create blocks, in a round-robin
fashion as per OBFT.

– Blocks produced according to this schedule for the active OBFT slots shall be consid-
ered valid by all nodes.

3.8.3 Rewards during the Transition Phase

We do this soft transition as a de-risking strategy, so that we can intervene in case we observe
any difficulties in the decentralised system. But we do not want this to have an effect on the
rewards that pools get. Operational difficulties of the overall system that cause us to slow down
the transition should not reduce the rewards that individual pools get.

In order to minimise the influence of the transition on pool rewards, we have to alter the way
we measure the apparent performance for pools (see Section 5.5.2) during the transition phase:

1. For determining the apparent performance of any pool, we will take the total number of
blocks in the epoch – N in Equation (1) – to be the number of blocks produced in non-OBFT
slots.

2. As long as we have d >= 0.8, we set the apparent performance of any pool to 1.

The reason for Item 2 is that when only a small fraction of blocks are produced by stake pools,
the measurement of the performance will be dominated by the statistical aspect of the leader
election, and pools might frequently get a performance of 0 by no fault of their own.

As an example8, consider a pool A with 1% of stake. In the fully decentralized case d = 0, A
would be elected slot leader for 0.01 · 21600 = 216 slots per epoch on average. For d = 0.9, A
would only be elected for 0.01 · 0.1 · 21600 = 21.6 slots per epoch on average, so A would only
have a tenth of the work (create 21.6 blocks instead of 216 blocks), but get the same rewards.

3.8.4 Transition Plan

The parameter d can be changed on an epoch-per-epoch basis, following the plan we will outline.
We plan to start with d = 0.9 and then decrease d by 0.1 each epoch, provided pool leader block

creation is sufficient to guarantee chain growth quality, and a sufficient fraction of active stake.
If block creation is insufficient, we will halt lowering d (or even increase d again) until we

have reason to believe that the problem has been understood and fixed.
In order to decide whether block creation is sufficient, we will estimate the probability that

at least k out of every 2k blocks would be created. If this probability is high enough (for example
greater than 1 − 10−10), block creation will be deemed sufficient.

7In Ouroboros Praos, a large fraction of slots will deliberately be empty, which makes it easier to treat network
delays in the adversarial model, and to still give guarantees of liveness and persistence when some blocks are not
propagated within a single slot. Note that it is still possible to achieve the same block frequency as in Ouroboros
Classic, by choosing a shorter slot length.

8In this example, we assume ns ∗ f = 21600, to match the block frequency of Byron.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 22

For the estimation, we use the Beta-Binomial Distribution: Given the number of slots a that
have been faithfully created and the number b of slots that have been missed (counting from the
beginning of the transition period) and using Bayes’ Prior B(1, 1), the probability in question
is P(X ≥ k), where X is drawn from the Beta-Binomial distribution with parameters (a + 1),
(b + 1) and 2k.

For example, in the very first transitional epoch, 10% of active slots, i.e. 2160 active slots9

will be given to pool leaders. If at least 1261 out of these 2160 slots are properly created, above
estimation (with a ≥ 1261 and b ≤ 2160 − 1261 = 899) leads to P(X ≥ 2160) ≥ 1 − 10−10, so we
will proceed with d = 0.8 in the second epoch. If however at least 900 slots are missed, we will
keep d at 0.9 for the time being.

In addition to monitoring the number of missed blocks, we will also look at the fraction of
stake that is active (i.e., is stored in addresses which belong to a registered stake address that is
delegating to a stake pool). The lower this ratio, the less stake is required to launch a 51% attack
on the system. This can be offset by increasing d. For example, if d ≥ 0.5, it is impossible to
launch a 51% attack. We can specify an amount of stake controlled by an adversary that we want
the system to be resilient against, and delay reducing d in order to meet this level of resistance.

3.9 Rewards

For the smooth operation of the system, it is beneficial to have a large portion of the stake
delegated to a set of reliable stake pools. Thus, we should incentivise delegating stake to reliable
stake pools. One way to do this is to have stake pools share their rewards with their participants.

The reward sharing mechanism should satisfy the following requirements:

1. Sharing rewards should be an automatic process that does not require an action, neither
by the stake pool operator nor the participants. This requirement is not only meant to
ensure that participants get their share reliably. The share of the rewards that are given to
a particular participant depends on the amount of stake that that participant delegated in
a particular epoch. Thus, any node that verifies a transaction that transfers the rewards for
a given epoch needs to access the stake information for that epoch. While this information
is archived on the blockchain indefinitely, looking it up for arbitrary past epochs might be
too costly. Making the sharing of rewards an automatic process in the following epoch
circumvents this problem.

2. Sharing rewards should not lead to an excessive growth of the UTxO. In particular, it
should avoid creating dust entries.

3. Sharing rewards should not lead to a burst of transactions that risks pushing the system to
the limits of its predictable region of operation.

4. Sharing rewards should not increase the linkability of addresses of a wallet.

5. The reward sharing policy of the stake pool should be transparent to potential participants.

Coming up with a solution that satisfies all of those requirements is less straightforward
than one might think. We did an exhaustive assessment of possible approaches, documented
in Appendix A, and finally opted for the mechanism described in A.3.3, which compromises
somewhat on Item 4, but satisfies all the other requirements.

9assuming k = 2160 and an epoch length of 10k active slots, as in Byron

https://en.wikipedia.org/wiki/Beta-binomial_distribution
https://en.wikipedia.org/wiki/Beta_distribution#Bayes'_prior_probability_(Beta(1,1))

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 23

3.9.1 Distributing Rewards

One of the difficult problems we had to solve during the design of the reward distribution
mechanism was UTxO explosion and dust creation: since rewards occur in every epoch, and all
the entries in the UTxO will generate rewards, a naive approach would lead to an exponential
growth of the UTxO, which is clearly not sustainable. Furthermore, individual rewards would
be small, so most of the UTxO entries created for reward distribution would be dust.

We have explored several approaches to circumvent this problem (see Appendix A for a
summary), and ended up with using reward accounts (Section 3.2.3). Here, UTxO growth is
prevented by using addresses that do not use UTxO style accounting at all. Instead, every
registered stake address has an associated account, using account-style book-keeping. That
way, the rewards from multiple epochs can be pooled, and stakeholders can withdraw them
manually. Note that this has two advantages over the superficially simpler approach of having
stakeholders claim their rewards directly:

• Updating the total rewards a stakeholder is due happens frequently, avoiding the need for
all nodes to hold on to the state that is needed to calculate rewards from old epochs.

• Rewards that are accumulated in reward accounts can be delegated before they are with-
drawn, eliminating an incentive for frequent withdrawals (which again would lead to an
unnecessary growth of the UTxO set).

After the end of each epoch, rewards for stake pool operators and members are calculated,
using the formulae in Section 5.6. The calculation will be based on

• The active stake pools, in particular their cost and margin parameters, pledged stake,
owner key hashes, and reward accounts for stake pool owners.

• The finite map giving the total stake for each registered stake address, taken at the point in
time that was relevant for creating the leader schedule for that epoch.

• The stake pool delegation relation.

• The leader schedule and list of empty slots for that epoch.

For each registered stake address, the rewards thus calculated are added to the balance of the
associated reward account.

Note that all the information that is relevant for the calculation of the rewards is publicly
available on the blockchain, so there is no need to explicitly write the balance of each reward
account to the chain. Instead, it suffices for all the nodes to store the reward accounts and their
current balance locally.

3.9.1.1 Collecting Rewards

Once a sizeable amount of funds has accumulated in a given reward account, the owner of that
account will want to withdraw those funds, and move them to an ordinary address of their
wallet. This withdrawal from an account to a UTxO can be done via a transaction, using the
reward account and its current balance as an additional input. In order to validate, it needs a
witness for the stake address associated with the reward account.

The transaction is protected against replay by the requirement of having at least one UTxO
input, as described in Section 3.3.2.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 24

3.9.1.2 Handling of Byron Addresses

All funds in Byron addresses will be ignored by the PoS system – there is no stake address
associated with Byron addresses. Consequently, there will be no rewards, and stakeholders
will be incentivised to stop using Byron addresses. Our transition plan, laid out in Section 3.8,
prevents a situation where the system would be vulnerable to a 51% attack because only a small
fraction of the total stake is active yet, by allowing for a period where the original nodes from
the Byron phase are still eligible to sign some of the blocks.

3.10 Fees

To prevent economic attacks, fees or refundable deposits should be charged where operators
incur costs. In particular we will have refundable deposits corresponding to the state that has to
be tracked for certificates10.

3.10.1 Transaction fees

The basic transaction fee covers the cost of processing and storage. The formula is
a + bx
With constants a and b, and x as the transaction size in bytes.
The fixed component is to cover per-transaction overheads. The component linear in the size

of the transaction reflects the processing and storage cost of transactions.
This aspect remains unchanged with delegation except to the extent that there are additional

objects that can appear in transactions relating to delegation. These simply increase the size of
the transaction and so are covered by the existing fee formula.

In principle different fees could be charged for different things appearing in a transaction, to
reflect their different processing costs. This is a future direction, but will not be introduced as
part of delegation.

3.10.2 Deposits

In addition to ordinary (non-refundable) fees, actions that require resources on the nodes should
require a deposit, as described in Appendix B. In particular,

• registering a stake address

• registering a new stake pool (but not updating the registration certificate of a stake pool
that already exists)

• creating a new UTxO entry (in a future release)

should all require making a deposit. This deposit should be released when

• a stake address is de-registered

• a stake pool is retired – there is a subtlety here, however, since the retirement certificate
states an epoch in the future where the pool will cease operation. The refund should
depend on that epoch, and we will delay paying out the refund until that epoch.

• a UTxO entry is removed by using it as an input to a transaction (in a future release)

Note that posting a delegation certificate does not require a deposit; delegation certificates need
a stake address registration certificate in order to be valid, so any deposit that we would require
for a delegation certificate can instead be included in the deposit for the associated stake address
registration certificate.

10We plan to extend this to also cover UTxO entries in the future.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 25

3.11 Time to Live for Transactions

For multiple reasons, we will require that transactions that are submitted to the system include
a Time to Live (ttl), a slot number11 after which the transaction can not be included in the ledger
any more. An obvious advantage is that this gives users the certainty that a transaction that
failed to be added to the chain can not be replayed in the future, so that they are safe to re-send
funds.

In the context of deposits and refunds, a ttl also proves to be useful: When a transaction
that releases a resource is created and submitted, it is not known when it will be effective, and
thus the refundable part of the deposit – which depends on the time at which the resource is
freed – can not be computed. But if the transaction does include a ttl, the latest slot in which the
transaction can be added to the ledger can be used to calculate the refund.

3.12 Robustness at the Epoch Boundary

As described, there is a lot of work to be done by the nodes as the system progresses from
epoch to epoch: the stake distribution and slot leader schedule need to be calculated, the fees
accumulated during the epoch need to be summed up, performance of the pools evaluated,
deposits decayed, and rewards determined and distributed.

Doing all that at the transition between two epochs is far from ideal. It creates a time period
where all the nodes will need additional resources. It also requires that all nodes finish those
calculations within a single slot length, and failure to do so will result in missed blocks and
temporary forks. Worse, since this period of increased activity is perfectly predictable, any
attacker of the system can leverage this, and time their attack appropriately to maximise impact.
Effectively, a predetermined breaking point is introduced at the epoch boundary.

It is thus desirable to spread this work out over a longer period when possible. And it turns
out that this is entirely achievable.

3.12.1 Calculating the Leader Schedule

The stake distribution and randomness used to determine the leader schedule for epoch e need
to be available at the start of epoch e. In the case of a public leader schedule, it is also convenient
to publish the schedule itself at the start of the epoch. But we can start calculating those before
the end of epoch e − 1. The details of when the stake distribution has to be taken for the leader
election, and when the randomness has to be agreed on, depends on the choice of consensus
protocol.

3.12.2 Calculating and Distributing Rewards

The rewards for epoch e depend on the contents of that epoch, so it is not feasible to start
calculating them during that epoch. However, there is no hard constraint to actually distribute
those rewards at the beginning of epoch e + 1. If we instead defer that payout by one epoch,
and pay rewards for epoch e at the beginning of e + 2, we will have a whole epoch for that
calculation.

3.13 Wallet Recovery Process

Wallet recovery is the process of reconstructing a wallet from the root key. In order to reconstruct
a wallet, all addresses belonging to that wallet which appear on the blockchain need to be
identified.

11We use the term “slot number” to refer to an absolute slot number, i.e., specifying both the epoch and the slot
throughout this document.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 26

In the Byron implementation, this is done by traversing the blockchain, and for each ad-
dress, checking whether it belongs to the wallet. Unfortunately, this is linear in the size of the
blockchain, leading to a very poor user experience.

To speed this up, we will reverse the strategy. Instead of going through the addresses on
the blockchain, checking for each whether it belongs to the wallet, we go through the possible
addresses of the wallet, and search whether they appeared on the blockchain.

In order for this to be efficient, we need to maintain an index, where we can look up addresses
in the blockchain by some key, and we need to have a way of generating the key for an arbitrary
range of addresses in the wallet, using only the root key as input.

Recall from Section 3.2 that a payment address contains a payment credential, as well as a
stake address reference, where only the stake address reference depends on the delegation for
that address. The key payment credential is derivable from the root key (in particular, it does
not depend on the delegation preferences of the wallet), and is a suitable key for the lookup of
addresses12.

Of course, we cannot search for all possible addresses of the wallet. Instead, we utilise the
tree structure of the HD wallet. We will require that the wallet software populates this tree in
a specified way that will allow us to do a kind of exponential search for the addresses of the
wallet13.

3.13.1 Trees of Depth 1

To simplify, let us consider a wallet where the HD wallet tree is of depth 1, so that each address
has an index i ∈ N. We will require that the wallet creates addresses in order, and that there is a
maximal address gap ī, such that the address αi will not be generated unless there is an address αi′ ,
with ∃i′ ∈ [i − ī − 1, i − 1] already appearing on the blockchain.

The first step in restoring a wallet is to find an upper bound on the number of addresses of
the wallet, iup. This can be done by consecutively looking at the intervals

In = [2n + i|i ∈ [0, ī]], n ∈ N

and checking whether any of the addresses in αi for i ∈ In appears on the blockchain. This
check is performed by creating the corresponding payment key, hashing it, and doing a look-up
in the index. For some n, this will fail, and we will have found ī consecutive indices for which
there are no addresses of this wallet on the blockchain. Because ī is the maximal address gap, no
address larger than 2n has been created for the address, and we have iup = 2n.

Afterwards, we can perform a binary search for the maximal address imax, in the interval
[2n−1, 2n]. In each step of this binary search, we will probe for ī consecutive addresses, starting
from an offset i. If none of them exist, we know that imax < i, otherwise imax ≥ i.

Finally, we will create all payment key hashes in the range [0, imax], and look up the corre-
sponding addresses.

3.13.1.1 Early Finish and Memoisation

The above process will perform more lookups than necessary. The binary search can be aborted
once the search window gets smaller than ī. In addition, we should consider memoising the
payment keys and/or lookups.

12Depending on the serialisation format for addresses, it might be possible to not use a separate index at all: if
H(vk) is a prefix of the serialised address, we can directly do a prefix query in the database.

13This is similar to the account discovery in BIP44.

https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 27

3.13.2 Taller Trees

This scheme can be generalised for trees of larger depth. The current wallet in Cardano has a
fixed depth of 2. Each address in this wallet has an index (i, j) ∈ N × N. In order to generalise
the above wallet restoration procedure for this wallet, we will require that there is no gap in the
i, and a maximal gap j̄ in j.

Identifying the maximal value imax is straightforward: look at lists of indices

[(i, j)|j ∈ I0]

for increasing values of i, until there is no address found on the chain for a specific value of i.
Once imax is found, we can iterate the method for trees of depth 1 over all i ∈ [0, imax].

Further generalisations to arbitrary depths are straightforward, provided that

• all the leaves are at the same depth

• at each depth, we can require a certain maximal gap

3.13.2.1 Retrieving Delegation Information

After the wallet software has determined the set of addresses that belong to it via the payment
keys, it needs to set its delegation preference. In order to do so, it compares the stake address
references of its addresses.

If the wallet consists of base and/or addresses using the same stake address the wallet should
look whether there is a stake address registration and delegation certificate for this key. If
there are, and the delegation certificate points to an active stake pool, the wallet should set
its delegation preference to use pointer addresses to the same stake address, and inform
the user of this choice. Otherwise – if the stake address is unregistered, or there is either
no delegation certificate or one that does not point to an active pool – it should inform the
user that the stake is currently undelegated, and that they should consider delegating to
receive rewards and add to the stability of the system.

If the wallet consists of addresses with different stake addresses the wallet should repeat the
process above for all the stake addresses, present the list of stake pools that are delegated
to by the wallet, and ask the user to pick one for future addresses, as well as provide an
option to re-delegate all funds to that pool.

After setting the delegation preferences of the newly restored wallet, the wallet software
should encourage the user to visit the delegation centre to make sure that this choice is still
competitive.

3.13.3 Maximal Address Gap

As explained above, the wallet recovery process depends on a defined constant for the maximal
address gap. A value of i > 0 allows a wallet owner to create several addresses at once which
do not have to be processed in order. The wallet software needs to be aware of this constant
so that it will not create undiscoverable addresses and so that it can warn the owner when it
reaches the limit.

By default, the maximal address gap will be i = 20. Wallets can allow using a custom value
(which should be convenient for exchanges or merchants), but when they do, the custom value
will have to be known during wallet restoration.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 28

4 Delegation Scenarios

4.1 Stake Pool Registration

Publicly announcing a stake pool for other people to delegate to requires two steps: posting
a stake pool registration certificate to the blockchain, and providing pool metadata, additional
information about the pool. The certificate contains all the information that is relevant for the
execution of the protocol (public key hashes, cost, margin, and pledge) as well as the content
hash of the metadata, while the metadata will be displayed to end users by their wallet. For
specifics about the metadata, see Section 4.2. If no metadata is provided, the stake pool is
considered private, and will not be displayed in wallets.

A stake pool operator can change the costs and margin of the pool by replacing the regis-
tration certificate of the pool with a new one. This allows operators to react, for example, to a
change in its operational costs or the exchange rate of ada.

The rewards that a stake pool gets depend on a pledge of funds that the stake pool owner(s)
provide. This adds a cost to creating a competitive stake pool, and protects against Sybil attacks
on the stake pool level (Section 2.2.1). In order to differentiate between delegated and pledged
stake, the stake pool operator will include a list of stake addresses, the owner stake addresses,
in the certificate. Stake delegated from any of the owner stake addresses will be counted
towards the stake pledged by the owner(s). Note that this still requires delegation certificates
to be posted14. Using a list of owner stake addresses allows for stake pool operators to use
multiple accounts/wallets for delegating the stake they pledged. It also allows a group of people
combining their stake to form a competitive pool, without losing any control over their funds
(see also the discussion in Section 3.3.5).

A stake pool operator will indicate, in the stake pool registration certificate, the amount
of stake that the owners pledge to the pool, when registering a pool. It is important that the
amount pledged is registered in the certificate: otherwise, an adversarial stake pool operator
could circumvent the Sybil protection of the pledge mechanism, by pledging stake to a pool
until it attracted stake, and then simply pledging the stake to the next pool. The pledge will be
enforced during the reward calculation: pools where the owners do not meet the pledge in a
given epoch will earn no rewards for that epoch. Note that this affects all pool rewards, both for
the operator and for pool members.

Note that it will still be possible for a stake pool operator to decrease the amount of stake
that they pledge to the pool, but this will require them to post a new certificate, which will notify
the stakeholders that delegated to the pool (if it reduces the desirability of the pool), possibly
triggering a re-delegation (see Section 4.3).

Remark: Due to the nature of our incentives mechanism (see Section 5), very large stake-
holders are incentivised to split their stake and create several pools. For a future version of
Cardano, we may facilitate this by allowing such stakeholders to set up all their pools with a
single certificate. For the present version, however, these pools will have to be created manually.
This seems justified, given that there is only a handful of such very large stakeholders and seeing
as such a feature would complicate engineering.

4.2 Stake Pool Metadata

The stake pool registration certificate (see Section 3.3.4) optionally contains a content hash and a
URL (up to 64 bytes), pointing to a JSON object with the following content:

A Ticker of 3-5 characters, for a compact display of stake pools in a wallet.

14We also contemplated automatically counting the stake controlled by any owner stake address towards the
pledge, but that complicates the design, since we had to forbid any of those addresses from posting valid delegation
certificates to prevent double delegation. Imposing a special treatment of those addresses would also be a violation
of the design goal from Section 2.5.1.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 29

A Name of up to 50 characters.

A Short Textual Description of up to 255 characters.

A URL to a homepage with additional information about the pool.

All characters in the metadata will be UTF8 encoded, as per the JSON specification. The
metadata is restricted to have a total size of no more than 512 bytes, including all JSON encoding
overheads.

The stake pool operators are responsible for serving this data at the URL provided in the
stake pool registration certificate. However, wallets should not retrieve the data for each stake
pool at those individual URLs. Not only would that be inefficient, it would also allow malicious
actors to slow down all wallets by intentionally delaying the response of their server. Instead,
metadata will be cached on metadata proxy servers.

Those proxy servers will query the metadata URLs in the stake pool registration certificates,
and cache the metadata. The wallet will then retrieve the metadata for pools it needs to display
from one of the proxy servers, instead of having to send a request to each of the pool’s metadata
URLs.

Those servers are simple, and in particular, they require relatively little trust: because of
the content hash, someone running a proxy server can not display forged metadata. The worst
thing they can do is filter the list of stake pools.

In order to avoid those proxy servers to become a point of centralisation of the system, it is
encouraged that third parties (stake pools and other members of the community) should also
run metadata proxy servers. Wallets should be configurable to query a number of those proxy
servers.

Another function that the metadata proxy servers provide is filtering malicious entries: it is
possible to embed a variety of malicious content in the metadata, and in particular via the link
to the stake pool’s homepage. Should it become known that a particular pool hosts dangerous
or illegal content15, maintainers of a metadata proxy can filter that entry and not provide it to
wallets. This is an advantage over writing the metadata directly to the chain, in which case there
would be no way to protect wallet users from visiting malicious sites directly from their wallet.

4.3 Display of Stake Pools in the Wallet

The wallet software will maintain a set of all the active stake pools. For each, it will perform a
lookup of the metadata (which is indexed by the metadata hash) to display to the user.

In order for stakeholders to be able to delegate their stake to a pool, the wallet will provide a
listing of stake pools, in a section of the UI called the delegation centre. In order to make it easy
for users to do a rational choice when delegating, this listing will be ordered by the rewards
that the user should expect from delegating to each pool. In particular, we use the non-myopic
pool member rewards, Equation (3) in Section 5.6.1. Since this ordering depends not only on
the costs and margin set by the stake pool operator, but also on the performance of the pool
and on the amount of stake that it already has accumulated, this will promote pools that are
reliable, have not yet reached saturation, and have a low cost and margin. In other words,
the users selfish interest to pick a stake pool that is promising large rewards is aligned with
the goal of placing the system in the hands of a number of reliable stake pool operators, and
of avoiding centralisation. The influence of the stake pool operator’s pledge on the rewards
provides protection against a Sybil attack on the stake pool level (Section 2.2.1).

When calculating the expected rewards, the wallet will use the best data available:

• The cost, margin, and pledged stake will be taken from the most recent stake pool registra-
tion certificate of the pool.

15for example phishing or Trojan software, with the purpose of infecting the computer the wallet is running on

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 30

• The performance of the pool will be estimated using historical data, as described in [BC20].

• The stake of the pool, and the amount of stake that the owners of the pool contribute
(in order to check whether their pledge is honoured) is taken from the current stake
distribution (calculated from the current UTxO set and delegation relation on demand
when the wallet performs the ordering).

• The member stake t in Equation (3) is taken to be the stake that the user is about to delegate.

For listings outside of the wallet, for informational purposes of which pools are generally
desirable, we can instead divide off the factor t in Equation (3)16 and get the reward per
stake delegated to a pool, assuming that the delegated stake is small enough to not push
the pool over the saturation threshold.

When the wallet is running and the user has delegated to a stake pool, the wallet should
monitor the non-myopic rewards regularly. Should the stake pool become less favourable (by
missing blocks, or even becoming inactive, or by changing its cost/margin), the wallet should
notify the user, and ask them to consider changing their delegation.

We had considered adding some jittering to the ordered list of stake pools, in order to prevent
a situation where a slight difference in the expected rewards would lead to stakeholders all
delegating to the same, slightly more preferable, pool. We decided against this, since

• Our incentive structure will have stake pools saturating anyway.

• Randomising the order of display makes it more difficult for stake pool operators to behave
rationally when setting their cost and margin.

4.4 Basic Delegation

Delegating stake requires posting two certificates to the chain: a stake address registration, and
a delegation certificate. Posting those certificates requires funds, so a user setting up their first
wallet will need a bootstrapping mechanism. This mechanism relies on the possibility of base
addresses using a stake address before posting the registration certificate for that key.

4.4.0.1 Bootstrapping a New Wallet

A user about to receive their first ada (whether through redemption, from a trade on an exchange,
or some other source), will set up a new wallet, and create a value address to receive those funds.
This address will refer to a stake address (by value) that is generated by the wallet, but not yet
registered on the chain.

After receiving the initial funds, the user can then delegate, by posting a stake address
registration certificate, as well as a delegation certificate for this stake address. Once the stake
address is registered, newly created value addresses can refer to it by pointer instead.

As mentioned in Section 3.2.1, there is a slight possibility that the stake address registration
certificate can be lost due to a fork. In that case, the pointer addresses would no longer point to
a valid certificate. Such addresses are considered valid addresses for the purpose of moving
funds, but ignored when determining the stake distribution (just like an enterprise address).
The wallet software should detect usage of such broken pointer addresses, and ask and assist
the user to create a new stake address registration, and to move the funds to value addresses
referring to this new stake address. Wallets can try to avoid this situation, by either allowing a
number of blocks between transactions t1 registering a stake address and t2 moving funds to a
pointer address for this stake address, or by using an output of t1 as an input to t2.

16Effectively taking the constant term in the Taylor expansion in t

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 31

4.4.0.2 Additional Accounts

The user might want to create an additional account in their wallet later on, using a different
stake address, to prevent linkability of all their addresses. In principle, they could use the
funds that are already in their wallet to post the stake address registration certificate for the
new account, and only have pointer addresses in the new account. However, this provides a
strong hint for observers of the chain that the two accounts belong to the same person, so it is
recommended to also bootstrap additional accounts in the manner described above.

4.4.0.3 Re-Delegating

Re-delegating the funds belonging to one stake address of the wallet requires posting a single
transaction, containing a delegation certificate. This will only incur the usual transaction fees.
In particular, the deposit paid for the first delegation certificate (which is thus overridden) will
be good for the new certificate. Consequently, re-delegation does not carry a heavy cost, as
required by Section 2.1.4.

4.5 Delegation of Cold Wallets

Cold wallets are to be used for long-term storage of larger funds, so it is important that we
encourage owners of cold wallets to participate in the PoS through the delegation mechanism.
This will require a second, non-cold, wallet, to post the initial certificates, as well as any
delegation certificates for re-delegation. There are two scenarios to be considered:

The User Does Have a Non-Empty Wallet Already Suppose a user owns a wallet with some
funds, and wants to move most of those to a cold wallet, such as a paper wallet. They
will use Daedalus to create this cold wallet. Daedalus can offer to post the stake address
registration certificate for the stake address of the cold wallet upon creation of the wallet,
and to store that stake address with the non-cold wallet, so that the user will be able to
sign and post delegation certificates for the cold wallet. In this case, all addresses in the
cold wallet can be pointer addresses.

The User Does Not Control Any Funds When Creating the Cold Wallet In this case, the user
will use Daedalus to create a cold wallet, which will use a base address. Daedalus will
provide the stake address, including the signing key(s), to the user, so that they can post a
registration certificate, and delegation certificates, whenever they have funds in a non-cold
wallet.

4.6 Self Delegation

Stakeholders should not be forced to delegate their stake to a pool. Instead, they should have
the option of running their own node, using their own stake.

Technically, such stakeholders will create a private pool, which is just a stake pool with margin
m = 1, and without providing metadata. Such pools will pay all rewards to the pool operator
(which is not a special rule, but just the effect of having a margin of 1), and they will not be
shown in the stake pool directory in Daedalus (although even if they were, they would always
be listed at the very bottom, since they would not promise any rewards to their members).

We had looked at other options that would not require individual stakeholders to register a
pool, but they either complicated the design, or made it possible for free riders to contribute
stake and get a share of the rewards by using suitably chosen addresses. The mechanism of
private pools adds no additional complexity to the delegation system (the only added work is to
suppress their listing in Daedalus). Optionally, the front-end could even set up (and retire) a
private pool at the press of a button, but this is not a must-have feature for the initial release.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 32

5 Design of Incentives

5.1 Overview of Incentives

On a high level, the goal of the incentives mechanism is to incentivise stakeholders to follow the
protocol and thereby to guarantee the secure and efficient operation of Cardano.

More specifically, we want a majority of stake holders to delegate to a number k of stake pools
(where k is a parameter of the system – see Section 5.2). The pool operators of those stake pools
are supposed to

• fulfill their Ouroboros protocol participation responsibilities, such as being online dur-
ing slots for which they are a slot leader and then creating a block containing as many
transactions as possible.

• provide additional network infrastructure.

Other stakeholders can then delegate their stake to a registered pool. Stakeholders are also
free to either run their own private pools, or not take part in the protocol at all. In the latter case,
their stake is ignored, and they will not receive any rewards.

Incentives are provided in the form of social pressure (by making pool operator performance
and adherence to the protocol public), but mostly by monetary incentives in the form of ada.

A design goal of the mechanism is to align monetary incentives as perfectly as possible with
protocol adherence: If every stakeholder follows their own financial interests, the system should
settle into a desirable state. If possible, there should never be a conflict of interest between
maximizing rewards and “doing the right thing”.

Rewards will be paid for each epoch and will be drawn from the following sources:

• monetary expansion

• transaction fees

• decayed deposits.

All rewards will be collected in a (virtual) pot, and then shared amongst stake pools depend-
ing on their contribution to the operation of the system. The main factor will be the relative
stake that a pool controls. However, there will be several refinements to this general principle:

• Rewards for a stake pool will be capped when the pool gets too large (otherwise, the
system would converge towards a state with all stake being delegated to one giant stake
pool).

• Rewards will decrease if a pool operator does not create the blocks they are supposed to
create.

• Pool operators will be compensated for their trouble and risk by

– reimbursing their costs and

– giving them a margin before distributing the remaining pool rewards proportionally
amongst pool operator and pool members. (Pool operators publicly declare their cost
and margin, which they can freely choose.)

• Pool rewards will slightly increase with the stake their owner(s)17 pledge to delegate to the
pool. There is no minimal stake required to create a pool – anybody can do this. However,

17For a discussion of stake pool owners vs stake pool operators see Section 3.3.5.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 33

pools where the owners contribute more stake will get slightly higher rewards. (This will
discourage pool owners from splitting their stake to operate several pools. It will also
help preventing Sybil attacks, where an attacker with low stake tries to gain control over a
majority of stake by creating a lot of pools with low costs.)

Our game theoretic analysis has shown that if stakeholders try to maximize their rewards
in a “short-sighted” (myopic) way (pool members joining the pool with the highest rewards at
this moment, pool operators raising their margins to get higher rewards at this moment), chaotic
behaviour will ensue.

Therefore, we will calculate non-myopic rewards. Wallets will display pools ranked by those
non-myopic rewards, thus guiding stakeholders to behave in a way that will benefit them in the
long run. Our analysis shows that if everybody follows this advice, the system will stabilize in a
Nash Equilibrium, meaning that no stakeholder will have incentive to act differently.

Rewards to both the pool operators and the pool members will be calculated and distributed
by the system some time after the end of an epoch. No manual intervention (transfer of funds)
will be necessary. In particular, a pool operator cannot simply refuse to share rewards with the
stake pool members.

5.2 Parameters

There will be a couple of parameters whose values have to be set in advance:

• The desired number of pools k ∈ N+.

• The influence a0 ∈ [0, ∞) the stake pledged by the owners should have on the desirability
of the pool. Small values of a0 indicate little influence.

• The expansion rate ρ ∈ [0, 1], determining the fraction of still available ada that will be
created per epoch.

• The fraction τ ∈ [0, 1] of rewards going to the treasury.

We will discuss in Section 5.10 how one could approach choosing reasonable values for
these.

5.3 Reminder: Stake Pool Registration

Recall from Section 4.1 that stakeholders who wish to operate a stake pool have to register their
pool on the blockchain. From the point of view of reward calculation (see Section 5.4), the
following information has to be included in the registration:

• The costs of operating the pool (in ada/epoch).

• The pool operator margin (in [0, 1]), indicating the additional share that the pool operator
will take from the pool’s rewards (after the costs have been deducted) before splitting
rewards amongst members (see Section 5.5.4).

• Proof of ada pledged to the pool, as a list of stake addresses that belong to the owner(s) of the
pool.

There will be no lower bound on the amount of ada that has to be pledged, but we will see
in Section 5.5.3 that pool rewards will increase with this amount. This is necessary to prevent
people with low stake from registering many pools, gaining control over a lot of stake and
attacking the system (see requirement 2.2.1 and Section 4.1).

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 34

5.4 Epoch Rewards

There will be three sources of rewards for an epoch: transaction fees, non-refundable parts of
deposits, and monetary expansion.

5.4.1 Transaction Fees

All transaction fees from all transactions from all blocks created during the epoch will be added
to the rewards pot of that epoch.

5.4.2 Deposits

As explained in Section 3.10.2, a part of the deposits for certificates and UTxO entries are
non-refundable, and contribute to the rewards pot instead.

5.4.3 Monetary Expansion

Every epoch, the total amount of ada in circulation T will be increased by adding ada to the
rewards pot. To ensure the amount of ada never exceeds a finite, specified limit T∞, the increase
will reduce exponentially. Also, the increase will depend on the number of blocks that have been
produced during the epoch. Specifically, each epoch, the contribution from monetary expansion
to the rewards pot is given by

min(η, 1)ρ (T∞ − T) ,

where

η is the ratio between the number of blocks that have been produced during the epoch, and
the expectation value18 of blocks that should have been produced during the epoch under
ideal conditions (i.e., no forks, no missed blocks).

For Ouroboros Classic [KRDO17], the number of expected blocks will be the number of
slots in an epoch, while for Ouroboros Praos, we will use the number of slots per epoch
times the active slots coefficient f (see Equation (1) in [DGKR17]).

ρ is the monetary expansion parameter.

T∞ is the maximal amount of ada to ever be in circulation (i.e., 45 · 109 ada).

T is the amount of ada in circulation at the beginning of the epoch for which we want to
calculate the rewards pot.

The dependence on η incentivises cooperative behaviour, and in particular discourages the
pools sabotaging each others blocks. Note that η can exceed 1 when there are more blocks
produced in an epoch than would be expected on average. But the product min(η, 1)ρ is always
bounded by 1, which is necessary to ensure we never exceed T∞ ada in circulation.

Since T∞ is finite, rewards from monetary expansion will decrease over time. This has to be
compensated by

• rising transaction fees when more and more people use the system and

• higher exchange rates from ada to USD when the system becomes more valuable.

Note that the fees that have been collected during the Byron era, where all nodes have been
provided by IOHK, Emurgo, and the Cardano Foundation, have not been paid out. Those fees
have reduced the amount of ada currently in circulation, but they did not change T∞. Effectively,
those fees will be distributed amongst future stakeholders via monetary expansion.

18Note that in Ouroboros Classic, this is just the number of slots in an epoch, but for instance in Praos, where we
do not always have one leader per slot, we only have a notion of how many blocks we expect per epoch on average.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 35

5.4.4 Treasury

A fraction τ of the rewards pot for each epoch will go to the treasury.
Note that we do not have a full treasury system yet, and implementing it requires further

research. Nevertheless, we start collecting funds for the treasury already, in a pot called the T pot.
Once the treasury is implemented, funds in the T pot will be made available for decentralised
development of the system.

5.5 Reward Splitting

In this section we describe how the total rewards R from one epoch are split amongst stakehold-
ers.

These calculations proceed in two steps: First, rewards are split amongst pools. Next, each
pool splits its share of R amongst its operator and its members.

5.5.1 Relative Stake: Active vs Total

As explained in Section 3.4.3, we distinguish the amount of active stake and the total stake. Stake
is only considered active when it is correctly delegated to a non-retired pool. Whenever we look
at fractions of stake (in the leader election, or when distributing rewards according to stake), we
need to specify whether we normalise to the active or to the total stake.

Leader Schedule For the purpose of determining the leader schedule, we use the construction
in Section 3.4.3, which yields the stake relative to the amount of active stake.

The benefit of doing this is that the chain growth will be independent of how many
stakeholders do delegate their stake.

Rewards Distribution When we distribute rewards depending on how much stake any party
provides, we will always use the stake relative to the total stake.

That way, we ensure that the share of the rewards that any one party gets does not change
when the amount of active stake changes. Not only is this more predictable for individual
players, it also prevents creating an incentive to block new delegation certificates. If we
were using the stake relative to the active stake, then any player who already had active
stake would lose rewards when other players started delegating their stake, which could
lead to a collective censorship of transactions with delegation certificates.

Performance Estimations The rewards of a pool will depend on how well they perform, i.e.,
on how many blocks they produce, and on how many blocks we would expect a pool with
their stake to produce (Section 5.5.2).

Since leader election depends on the fraction of active stake that a pool controls, we have
to normalise to active stake when estimating performance as well.

5.5.2 Stake, Performance, and Block Production

The incentives scheme developed in [BKKS18] distributes rewards solely on the basis of the size
of pools in terms of the stake that they control (and the stake pledged by the owner(s)). This
does eliminate any incentive for a pool to try to sabotage another pool (be it through ignoring
their blocks, or even by mounting DoS attacks on their nodes). However, it does not incentivise
pool operators to ensure that their pool performs well (i.e., produces most of the blocks it is
eligible to create). This invites free-riders, pools that rely on other pools to maintain the system,
and collect rewards without doing any work.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 36

For Cardano, we will stay close to the scheme of [BKKS18], but we will also take into account
the performance of a pool. Unfortunately, tracking the performance of a pool is not trivial in
protocols without a public leader schedule, like Ouroboros Praos.

In order to get a handle on the performance of a pool, let us consider the fraction β of all
blocks within a given epoch that the pool created.

There are multiple factors that influence β: the stake of the pool, how well it performs, and
some randomness due to the leader election and the overall performance of the other pools and
the network. We can write19

β = σa pre ,

where

σa is the relative stake σ of the pool (the fraction of the active stake that the pool controls),

p is the performance p of the pool, i.e. the fraction

p =
n

max(N, 1)

of the number n of blocks it successfully added to the chain and the number N of slots it
was elected as a leader, and

re is a factor that captures the relation between the relative stake σa of the pool, the number
N of slots it is elected as a leader, and the total number N of blocks that were added to the
chain during the epoch. To be precise, we have

re =
N

σa max(1, N)
.

The factor re captures random influences on β: the randomness in the leader election that
influences N, and the randomness both from the leader election and the bunch of random
influences on N (leader election, forks, performance of the network and other pools).

If we insert the definitions of p and re into β, we find that

β = σa
n

max(N, 1)
N

σa max(1, N)
=

n
max(1, N)

,

which is indeed the fraction of blocks produced by the pool20.
In Ouroboros Praos, we can observe σa, n, and N, but we do not have a direct handle on any

of N, re, or p. From the observables, we can extract

β =
n

max(1, N)
. (1)

While the true performance p is not accessible, we can define and measure the apparent perfor-
mance

p := pre =
β

σa
.

We will use the apparent performance p as a proxy for the performance when determining the
rewards for pools.

19We assume a linear relation between stake and the number of blocks that a pool is eligible to create. Strictly
speaking, this is not the case for Ouroboros Praos. However, the error when linearising the leader election function is
small, particularly for the range of parameters we are considering for Cardano.

20When cancelling N and max(N, 1), note that for N = 0, also n = 0, and the equation trivially holds.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 37

5.5.3 Pool Rewards

For a given epoch, the optimal rewards for a pool are

f (s, σ) :=
R

1 + a0
·
(

σ′ + s′ · a0 ·
σ′ − s′ z0−σ′

z0

z0

)
. (2)

Here

• R are the total available rewards for the epoch (in ada).

• a0 ∈ [0, ∞) is a parameter determining owner-stake influence on pool rewards.

• z0 := 1/k is the size of a saturated pool.

• σ′ := min(σ, z0), where σ is the relative stake of the pool (note that this is relative to the
total stake, not the active stake).

• s′ := min(s, z0), where s is the relative stake of the pool owner(s) (the amount of ada
pledged during pool registration, see Section 4.1).

As mentioned in Section 4.1, the rewards for a pool where the owner(s) fail to honour their
pledge of stake will receive zero rewards, and so will have f = 0.

Note that σ includes the stake s pledged by the pool owner(s). For example, let us assume that the
total existing supply of ada is T = 31, 000, 000, 000, and consider a pool whose owners pledged
ada 15,500,000 and who attracted another ada 15,500,000 from their pool members. Then

s =
15, 500, 000

31, 000, 000, 000
= 0.0005 and

σ =
15, 500, 000 + 15, 500, 000

31, 000, 000, 000
= 0.001.

The actual rewards take the apparent performance into account, and are given by 21

f̂ (s, σ, p) := p f (s, σ) .

Note that

• Even when a pool’s true performance is 1, its actual rewards might be less than its optimal
rewards, because of the randomness in re. Likewise, sometimes a pool’s actual rewards
will be higher than their optimal rewards, if they are lucky in the leader election process.

These effects will balance each other, so that a well performing pool will get their optimal
rewards on average over multiple epochs.

• We will always have
∑

pools
f̂ (s, σ, p) ≤ R ,

so that all actual rewards can be paid from the rewards pot22.

The difference R − ∑pools f̂ (s, σ, p) will be sent back to the reserves.
21Note that since pσ′ = β σ′

σ , this nearly amounts to replacing σ′ by β σ′

σ in Equation (2), i.e. to rewarding pools
based on the number of blocks that they produced, rescaled by a punishing factor σ′/σ for pools that grow beyond
z0.

22To prove this, use that s′ ≤ σ′ ≤ z0, and ∑pools β = 1.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 38

5.5.4 Reward Splitting inside a pool

After the rewards for a pool have been determined according to Section 5.5.3, those rewards are
then split amongst the pool operator and the pool members.

Consider

• f̂ , the pool rewards,

• c, the pool costs (in ada),

• m ∈ [0, 1], the margin,

• σ ∈ [0, 1], the relative stake of the pool.

Note that the values c and m for registered pools are available from the pool registration, see
Section 4.1.

5.5.4.1 Pool Operator Reward

The pool operator reward roperator (in ada) is calculated as follows (where s ∈ [0, 1] is the stake
delegated to the pool by its owner(s)):

roperator(f̂ , c, m, s, σ) :=

{
f̂ if f̂ ≤ c,

c + (f̂ − c) ·
(

m + (1 − m) · s
σ

)
otherwise.

5.5.4.2 Pool Member Reward

The pool member reward rmember (in ada) is calculated as follows (where t ∈ [0, 1] is the stake of
the pool member):

rmember(f̂ , c, m, t, σ) :=

{
0 if f̂ ≤ c,

(f̂ − c) · (1 − m) · t
σ

otherwise.

5.6 Non-Myopic Utility

It would be short-sighted (“myopic”) for stakeholders to directly use the reward splitting
formulas from Section 5.5, and base their delegation choice on those. They should instead
take the long-term (“non-myopic”) view. To this end, the system will calculate and display
the “non-myopic” rewards that pool operators and pool members can expect, thus supporting
stakeholders in their decision whether to create a pool and to which pool to delegate their stake.

The idea is to first rank all pools by “desirability”, to then assume that the k most desirable
pools will eventually be saturated, whereas all other pools will lose all their members, then to
finally base all reward calculations on these assumptions.

5.6.1 Pool Desirability and Ranking

First we define the desirability of a pool with pledged owner stake s, costs c and margin m.
Simply put, this number indicates how “desirable” or “attractive” this pool is to (potential)
members.

If the pool is saturated, the pool rewards are

f̃ (s, p) := f̂ (s, z0, p) =
pR

1 + a0
· (z0 + min(s, z0) · a0) .

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 39

The desirability is then defined as

d(c, m, s, p) :=
{

0 if f̃ (s, p) ≤ c,(
f̃ (s, p)− c

)
· (1 − m) otherwise.

To determine a pool’s rank, we order pools by decreasing desirability. The most desirable pool
gets rank 1, the second most desirable pool gets rank 2 and so on.

We predict that pools with rank ≤ k will eventually be saturated, whereas pools with rank
> k will lose all members and only consist of the owner(s).

5.6.2 Non-Myopic Pool Stake

Consider a pool with pledged owner stake s, total stake σ and rank r. Consider also a potential
delegator with stake t. We define the non-myopic stake σnm as

σnm(s, σ, t, r) :=
{

max(σ + t, z0) if r ≤ k,
s + t otherwise.

5.6.3 Non-Myopic Pool Operator Rewards

The non-myopic pool operator rewards of a pool with costs c, margin m, pledged owner stake s,
stake σ, rank r, and apparent performance p are

roperator,nm(c, m, s, σ, r, p) := roperator

(
f̂
(
s, σnm(s, σ, 0, r), p

)
, c, m, s, σnm(s, σ, 0, r)

)
.

5.6.4 Non-Myopic Pool Member Rewards

The non-myopic pool member rewards of a pool with costs c, margin m, pledged owner stake s,
stake σ, rank r, and apparent performance p, for a member contributing member stake t, are

rmember,nm(c, m, s, σ, t, r, p) := rmember

(
f̂
(
s, σnm(s, σ, t, r), p

)
, c, m, t, σnm(s, σ, t, r)

)
. (3)

5.6.5 Replacing Apparent Performance

Using the apparent performance of a pool within the last epoch is not suitable for determining the
long-term expected rewards for delegating to a pool. Rather, one should use the estimate the
performance using the historical data. This avoids preferring or discarding a pool just because it
performed exceptionally well or bad in one particular epoch. If the ratio of the number of stake
pools and the number of expected blocks per epoch is large, this becomes even more important,
since the apparent performance in a single epoch would be bound to fluctuate quite a bit. Our
method of estimating stake pool performance is explained in [BC20].

5.7 Utility

When deciding whether to operate a stake pool or participating in an existing pool as a member,
stakeholders should not look at the plain rewards. Instead, they should look at the utility, the
difference between rewards and costs. The simulations in [BKKS18] use the utility as a basis for
rational decisions of the players.

For the purpose of this document, it is sufficient to consider the rewards: for pool members,
they are identical (since they do not have to consider running costs), and we do not plan
the wallet to assist pool operators in setting up a stake pool or defining the cost and margin
parameters (at least not for the initial release).

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 40

5.8 Claiming Rewards

All information necessary to calculate each stakeholder’s rewards for each epoch are contained
in the blockchain, so there is in principle no need to record any extra information related to the
Incentives mechanism.

However, there is the challenge to avoid “bloat” caused by thousands of “micro payments”
from rewards after each epoch.

This proved to be quite a challenge. In the end, we have converged to the mechanism de-
scribed in Section 3.9.1. Alternative approaches that we considered are described in Appendix A
(therein, Appendix A.3.3 is the option that we have picked).

5.9 Information in Daedalus

Our game theoretic analysis assumes that every stakeholder has all relevant information avail-
able at any time.

This means that pool costs, margins, average apparent performance, and pool owners stakes,
as well as the (non-myopic) utilities derived from these figures, have to be easily accessible, so
that stakeholders can quickly react to changes and always choose the strategy that maximizes
their own rewards.

Daedalus will make this information readily available, as detailed in Section 4.3.

5.10 Deciding on Good Values for the Parameters

We need to decide on reasonable values for the parameters k, a0, ρ and τ (see Section 5.2).

5.10.1 k

The desired number of pools k depends on the level of decentralization we want on the one
hand and network efficiency and overall costs of the Cardano system on the other hand. A value
of k = 100 or k = 1000 seems to be reasonable.

5.10.2 a0

As explained above, parameter a0 determines the influence that the stake pledged by the pool
owner(s) has on pool rewards.

Our game theoretic analysis predicts that the k pools with the highest potential, the highest
value of

P(λ, c) :=
[

z0 + a0 · min
(

λ,
1
k

)]
· R

1 + a0
− c

(where λ is the stake pledged by the pool owner(s) and c are the pool costs) will create the
saturated pools.

Let us consider an attacker with stake S < 1
2 , who wants to gain control over a majority of

stake. This means they have to lead k
2 pools, committing λ = 2S

k stake to each.
In order for their k

2 pools to be successful, each of these needs to have higher potential than
the honest stakeholder with the k

2 -highest potential has. If that honest player has committed
stake λ̃ ≤ 1

k and has costs c̃ and if our malicious attacker is willing to lie and claim lower

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 41

“dumping” costs c = r · c̃ (for r ∈ [0, 1)), this means

P
(

2S
k

, c
)
> P(λ̃, c̃) ⇐⇒

(
z0 + a0 ·

2S
k

)
· R

1 + a0
− c >

(
z0 + a0 · λ̃

)
· R

1 + a0
− c̃

⇐⇒ a0 ·
2S
k

· R
1 + a0

− c > a0 · λ̃ · R
1 + a0

− c̃

⇐⇒ a0 ·
(

2S
k

− λ̃

)
· R

1 + a0
> c − c̃ = −(1 − r) · c̃

a0>0⇐⇒ 2S
k

− λ̃ > − c̃ · (1 − r) · (1 + a0)

R · a0
= − c̃

R
· (1 − r) ·

(
1 +

1
a0

)
⇐⇒ S >

k
2
·
[

λ̃ − c̃
R
· (1 − r) ·

(
1 +

1
a0

)]
In the following tables, we can see how the choice of a0 influences the minimal stake S

needed for a successful attack for various values of λ̃, c̃ and r:
λ̃ = 0.01, c̃ = 0.001, r = 0.9

a0 S
0.010 0.0000
0.020 0.2450
0.030 0.3283
0.040 0.3700
0.050 0.3950
0.060 0.4117
0.070 0.4236
0.080 0.4325
0.090 0.4394
0.100 0.4450

λ̃ = 0.01, c̃ = 0.005, r = 0.9

a0 S
0.050 0.0000
0.100 0.2250
0.150 0.3083
0.200 0.3500
0.250 0.3750
0.300 0.3917
0.350 0.4036
0.400 0.4125
0.450 0.4194
0.500 0.4250

λ̃ = 0.01, c̃ = 0.01, r = 0.9

a0 S
0.050 0.0000
0.100 0.0000
0.150 0.1167
0.200 0.2000
0.250 0.2500
0.300 0.2833
0.350 0.3071
0.400 0.3250
0.450 0.3389
0.500 0.3500

λ̃ = 0.005, c̃ = 0.001, r = 0.9

a0 S
0.010 0.0000
0.020 0.0000
0.030 0.0783
0.040 0.1200
0.050 0.1450
0.060 0.1617
0.070 0.1736
0.080 0.1825
0.090 0.1894
0.100 0.1950

λ̃ = 0.005, c̃ = 0.005, r = 0.9

a0 S
0.050 0.0000
0.100 0.0000
0.150 0.0583
0.200 0.1000
0.250 0.1250
0.300 0.1417
0.350 0.1536
0.400 0.1625
0.450 0.1694
0.500 0.1750

λ̃ = 0.005, c̃ = 0.01, r = 0.9

a0 S
0.100 0.0000
0.200 0.0000
0.300 0.0333
0.400 0.0750
0.500 0.1000
0.600 0.1167
0.700 0.1286
0.800 0.1375
0.900 0.1444
1.000 0.1500

λ̃ = 0.001, c̃ = 0.001, r = 0.9

a0 S
0.100 0.0000
0.200 0.0200
0.300 0.0283
0.400 0.0325
0.500 0.0350
0.600 0.0367
0.700 0.0379
0.800 0.0388
0.900 0.0394
1.000 0.0400

λ̃ = 0.001, c̃ = 0.005, r = 0.9

a0 S
0.500 0.0000
1.000 0.0000
1.500 0.0083
2.000 0.0125
2.500 0.0150
3.000 0.0167
3.500 0.0179
4.000 0.0188
4.500 0.0194
5.000 0.0200

λ̃ = 0.001, c̃ = 0.01, r = 0.9

a0 S
0.100 0.0000
0.200 0.0000
0.300 0.0000
0.400 0.0000
0.500 0.0000
0.600 0.0000
0.700 0.0000
0.800 0.0000
0.900 0.0000
1.000 0.0000

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 42

λ̃ = 0.01, c̃ = 0.001, r = 0.5

a0 S
0.050 0.0000
0.100 0.2250
0.150 0.3083
0.200 0.3500
0.250 0.3750
0.300 0.3917
0.350 0.4036
0.400 0.4125
0.450 0.4194
0.500 0.4250

λ̃ = 0.01, c̃ = 0.002, r = 0.5

a0 S
0.050 0.0000
0.100 0.0000
0.150 0.1167
0.200 0.2000
0.250 0.2500
0.300 0.2833
0.350 0.3071
0.400 0.3250
0.450 0.3389
0.500 0.3500

λ̃ = 0.01, c̃ = 0.003, r = 0.5

a0 S
0.100 0.0000
0.200 0.0500
0.300 0.1750
0.400 0.2375
0.500 0.2750
0.600 0.3000
0.700 0.3179
0.800 0.3313
0.900 0.3417
1.000 0.3500

λ̃ = 0.005, c̃ = 0.001, r = 0.5

a0 S
0.050 0.0000
0.100 0.0000
0.150 0.0583
0.200 0.1000
0.250 0.1250
0.300 0.1417
0.350 0.1536
0.400 0.1625
0.450 0.1694
0.500 0.1750

λ̃ = 0.005, c̃ = 0.002, r = 0.5

a0 S
0.100 0.0000
0.200 0.0000
0.300 0.0333
0.400 0.0750
0.500 0.1000
0.600 0.1167
0.700 0.1286
0.800 0.1375
0.900 0.1444
1.000 0.1500

λ̃ = 0.005, c̃ = 0.003, r = 0.5

a0 S
0.200 0.0000
0.400 0.0000
0.600 0.0500
0.800 0.0812
1.000 0.1000
1.200 0.1125
1.400 0.1214
1.600 0.1281
1.800 0.1333
2.000 0.1375

λ̃ = 0.001, c̃ = 0.001, r = 0.5

a0 S
0.500 0.0000
1.000 0.0000
1.500 0.0083
2.000 0.0125
2.500 0.0150
3.000 0.0167
3.500 0.0179
4.000 0.0188
4.500 0.0194
5.000 0.0200

λ̃ = 0.001, c̃ = 0.002, r = 0.5

a0 S
5.000 0.0000

10.000 0.0000
15.000 0.0000
20.000 0.0000
25.000 0.0000
30.000 0.0000
35.000 0.0000
40.000 0.0000
45.000 0.0000
50.000 0.0000

λ̃ = 0.001, c̃ = 0.003, r = 0.5

a0 S
5.000 0.0000

10.000 0.0000
15.000 0.0000
20.000 0.0000
25.000 0.0000
30.000 0.0000
35.000 0.0000
40.000 0.0000
45.000 0.0000
50.000 0.0000

See Figure 4 for the effect of various choices for a0 on pool rewards (for k = 10).

5.10.3 ρ

In order to determine the inflation rate per epoch ρ, we need five more pieces of information:

• The expected exchange rate e from ada to USD (in USD/ADA).

• The average costs c (in USD) to run a pool for one year.

• The average transaction fees F (in ada) paid during one epoch.

• The expected ratio r of rewards per year per staked ada.

• The expected value of η, the ratio of actually produced blocks versus expected produced
blocks (see 5.4.3).

The available rewards for one epoch (assuming an equilibrium state with k pools and noticing
that there are 365

5 = 73 epochs per year) will be

(1 − τ) ·
(

F + min(η, 1) · ρ · (T∞ − T)
)
− k · c

73 · e
.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 43

Figure 4: Effect of different choices for a0

On the other hand, expected rewards per epoch are

T ·
(

73
√

1 + r − 1
)

.

Equating the two, we get

ρ =
T ·
(

73
√

1 + r − 1
)
− (1 − τ) · F + k·c

73·e
(1 − τ) · min(η, 1) · (T∞ − T)

.

For example, using

• k = 100,

• T = 31, 000, 000, 000 ada,

• T∞ = 45, 000, 000, 000 ada,

• e = 0.5 USD/ada,

• c = 1, 000 USD,

• F = 2, 000 ada,

• r = 0.05,

• τ = 0.2 and

• η = 0.9

we would get

ρ =
31, 000, 000, 000 ·

(
73
√

1 + 0.05 − 1
)
− 0.8 · 2000 + 100·1000

73·0.5
0.8 · 0.9 · (45, 000, 000, 000 − 31, 000, 000, 000)

≈ 0.0021.

This would correspond to reducing the remaining amount of available ada by 1.002173 − 1 ≈
0.17 = 17% per year (which sounds pretty high. . .).

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 44

5.10.4 τ

Setting τ is a policy decision; we will probably use τ = 0.2, i.e. 20% of available epoch rewards
will be sent to the treasury.

6 Satisfying the Requirements

In the following, we describe how the requirements listed in Section 2 are satisfied by the design
in this document.

Section 2.1.1 Proof of Eligibility The leader election process takes delegation into account (Sec-
tion 3.6), so the leader schedule will contain the key hash of the pool that is expected to
sign the block. The operational key certificate will be included in the block header.

Section 2.1.2 Visibility of Delegation on the Blockchain Delegation via delegation certificates
is visible on the blockchain. Operational key certificates are only used for hot/cold key
management within a stake pool. Thus, they are not relevant for the rewards sharing
process.

Section 2.1.3 Restricting Chain Delegation Chain delegation is properly restricted, as described
in Section 3.4.4.

Section 2.1.4 Cheap Re-Delegation Re-delegation can be performed cheaply by issuing a new
delegation certificate.

Section 2.1.5 Neutral Addresses The design includes enterprise addresses (Section 3.2.2), which
are disregarded by the PoS protocol.

Section 2.1.7 Multi-Sig Delegation By allowing script credentials not only for payment, but
also for stake credentials, and implementing a language for expressing multi-sig conditions,
we provide a mechanism for multi-sig delegation (see Section 3.2).

Section 2.2.1 Sybil Attack Protection at Stake Pool Level Stake pool owners are expected to
pledge an amount of stake to their pools that has an influence on the rewards for their
stake pool, and consequently on the position of the stake pool in the listing displayed to
stakeholders (Section 4.1, Section 4.3, Section 5.3).

Since this pledge cannot be shared between multiple pools, creating n viable stake pools
will require funds linear in n.

Section 2.2.2 Address Nonmalleability Protection against the malleability attack, by the wallet,
is described in Section 3.2.6.

Section 2.2.3 Public Payment Keys Should not be Disclosed Prematurely The introduction of
a dedicated stake address (Section 3.2) avoids the need to use the payment key for delega-
tion purposes.

Section 2.2.4 Mitigate Key Exposure Stake pool operators are required to use operational key
certificates for hot/cold key management, as described in Section 3.3.7.

Section 2.2.5 Handle Inactive Stake Pools Stake pools can be retired via a retirement certificate
(Section 3.3.4. If a stake pool ceases to operate without being properly retired, its members
will be incentivised to re-delegate: their rewards will start to diminish, and their wallet
will notify them that the pool they have delegated to is not producing blocks anymore
Section 4.3.

In addition to this, Appendix C describes an optional mechanism to detect and ignore
inactive pools that still have stake.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 45

Section 2.2.6 Avoid Hard Transition As described in Section 3.8, we will have a smooth tran-
sition from Byron to Shelley, with the core nodes gradually transferring the right and
obligation to sign blocks to stake pools.

Section 2.2.7 Change Delegation Without Payment Key Delegation of cold wallets is described
in Section 4.5, and does not require having the payment key of the cold wallet online.

Section 2.4.1 Master Recovery Key Wallet recovery is described in Section 3.13, and does not
require any information in addition to the master key.

Section 2.4.2 Address Recognition Wallets will recognise addresses belonging to it by looking
at the payment key hash part of the address, as described in Section 3.2.6.

Section 2.4.3 Wallet should be Runnable on Independent Devices With the caveats listed in
that requirement, nothing in this document requires wallets running on different devices
to share state.

Section 2.4.4 Maintain Privacy Having an efficient delegation mechanism – and in particular a
mechanism where delegation is rewarded – requires a slight compromise on the level of
pseudonymity, since addresses using the same stake address will be linkable. However,
users can decide to use a number of different accounts, with separate stake addresses, if
they are willing to pay the fees for using multiple stake addresses. This will give them a
level of pseudonymity that is not worse than that in the Ethereum network.

They can also choose to use a distinct stake address per value address, or value addresses
with no stake address at all, which gives pseudonymity that is no worse than in Bitcoin.

Section 2.4.5 Short Addresses The goal of having reasonably short addresses has guided the
design of delegation, and we do not see an obvious way of making them even shorter,
while still satisfying the rest of the requirements.

A Assessment of Rewards Sharing Mechanisms

This appendix gives an overview over the different mechanisms for rewards sharing that we
took into consideration. While this is not needed for implementing the delegation system, the
information is still useful enough to be included in this document. Choosing a mechanism for
rewards sharing involves a number of non-trivial trade-offs, and future systems might want to
pick one that we discarded for Cardano.

A.1 General Considerations

1. We use HD Wallets to provide some level of anonymity to stakeholders. We would not
like to abandon this anonymity for the ability to share rewards.

• To preserve this level of anonymity HD wallet users will need to associate separate
stake addresses with each HD wallet generated address.

2. We wish to avoid arbitrary growth in the UTxO (or any other globally replicated record,
e.g. contents of epoch boundary blocks).

• This is potentially at odds with the rewarding of all stakeholders at all epochs

3. We want to avoid creating dust (entries in the UTxO that are so small that including them
in a transaction is not economical, since their balance is close to or even less than the
increase in fees resulting from including another input).

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 46

• The systemic issue is that dust is likely to have an unbounded lifetime in the UTxO

• Transaction fee structure could be modified to remove the transaction cost constraint.
The requirement on action by the receiver still remains.

4. The network has a finite capacity to process transactions. We should avoid using a
significant fraction of this capacity for sharing rewards. In particular, we want to avoid
causing unreasonable spikes in the transaction rate. Those could either bring the system
down on their own, or act as an invitation to a timed DoS attack.

5. The stake pool operator should not be required to take an action to initiate sharing rewards
with members.

6. Verifying that a reward is legitimate will require a node to access some information (like
the leader schedule of the epoch in which the reward was earned, as well as the delegation
pattern at the time the leader election for that epoch took place). The time and space
complexity for this should be constant in the size of the blockchain and/or the UTxO of
non-reward entries.

Unless we want to give up on anonymity (1.), each address has to separately receive rewards.
Together with 2., 3., and 4., this severely restricts any approach that distributes rewards using
ordinary transactions.

A.1.1 Hierarchy of desirability of reward distribution

• Reward stakeholders on the basis of their holding at an epoch boundary

– Stakeholders are not explicitly represented - there can be a proxy

– One representation of stake delegation (direct to stake pool) which has the property
of anonymity-via-aggregation. This, combined with the desire to not require stake
pools to do the distribution a UTxO centric reward distribution mechanism.

• Reward stakeholders that maintain a UTxO/stake over the total epoch length.

– This may be seen a “regressive” property in that it would not reward those stake-
holders who engage in high-velocity value movements (e.g make use of the HD
wallet).

– This is a property of certain solutions.

A.1.2 Summary of key points of when rewards are calculated

• Point in Time

– Just considers addresses at an epoch boundary

• Duration in Time

– Set of stakeholder address and pool arrangement is fixed at an epoch boundary (say
epoch N − 1 to epoch N)

– Rewards are calculated at the transition from epoch N to epoch N + 1

– Only stakeholder addresses that have non-zero associated value at the epoch N to
N + 1 boundary (i.e have value at both the epoch N − 1 to N and the epoch N to
N + 1 boundaries) will be eligible to receive rewards

* Noting that this could interact badly with HD wallet users

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 47

A.2 Approaches that are Ruled Out

A.2.1 Manual Sharing

In this approach, only stake pool operators are rewarded directly by the system, and it is their
responsibility to share rewards with members of the pool.

This approach has been ruled out, since it:

1. requires additional trust in stake pool operators to do this correctly (5.)

2. requires at least stake pool operators to group the addresses of each member, to keep the
volume of transactions somewhat reasonable (1., 2., 3., and 4.)

3. The rewards for members that did not contribute much stake are likely to be dust (3.)

A.2.2 Automatically Issue Transactions Each Epoch

In this approach, the system automatically distributes rewards at the end of an epoch, by sending
transactions with outputs to every address that delegated to a stake pool that produced at least
one block during that epoch.

This approach has been ruled out, since it:

1. Leads to a super-linear growth of the UTxO, creating an output per address per epoch (2.)

2. Is likely to create lots of dust for small stakeholders (3.)

3. Will lead to a huge burst of transactions, proportional to the number of addresses with
non-zero balance in the system (4.). This could be lessened somewhat by sending the
transactions over the course of the following epoch, but it would still use up a large
fraction of the system’s ability to process transactions (4.)

A.2.2.1 Complexity

• Creates one “UTxO” per non-zero address at the boundary/duration - this would create
(today) ˜650k transactions per epoch

A.2.3 Let Members Collect Rewards

An alternative is to let every stake pool member be responsible for collecting their own rewards.
This approach has the virtue that members could wait several epochs until they had accumulated
enough rewards to warrant a transaction. The overall rate of transactions for sharing rewards
would be reduced, the transactions would not come in bursts, and the problem of creating dust
could be avoided.

However, this approach has been ruled out, since it:

1. Requires nodes to cache or quickly retrieve the whole history of leader schedules, as well
as the delegation configurations at the time of each leader selection (6.)

A.3 Feasible Approaches

A.3.1 Automatic UTxO Updates

This unique approach circumvents the problems of transaction rates, dust entries, and UTxO
growth, at the expense of introducing an implicit modification of the UTxO set.

After an epoch, each UTxO entry that delegated to a stake pool will have its balance updated
to reflect the rewards that it earned. Since the update can be derived from information that

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 48

every node has (leader schedule and delegation pattern at the last election), it can be carried out
by each node individually.

Sadly, this approach does come with its own drawbacks:

1. It is not yet clear how a lightweight wallet would determine the correct UTxO set.

2. It introduces an implicit update of each UTxO entry, a huge moving part that makes it
much harder to reason about the system.

3. Transactions that are formed before an update, but included after it, will have a larger total
input than the issuer anticipated.

4. (Public Perception) This may be perceived as subverting the notion of immutability of the
blockchain (at least in its UTxO model)

A.3.2 Lotteries per Stake Pool

A variation of “Automatically Issue Transactions Each Epoch”, this approach avoids dust and
creating a huge number of transactions by performing one lottery per stake pool. A number
of winning addresses is determined, and the rewards are distributed amongst those addresses.
The probability of any address winning the lottery is proportional to the stake that that address
contributed to the pool. Benefits of this approach are:

1. The number of transactions will be proportional to the number of stake pools that signed
at least one block, which is nicely bounded by the number of slots in an epoch.

2. The chances of creating dust entries is fairly low, since each winning address will receive a
sizeable fraction of the pools rewards.

3. There is no need to group addresses per stake pool member.

4. Possibly – this would have to be investigated by legal – this could make ada less like a
security.

The remaining drawbacks are:

1. It will still create a burst of transactions. This could be prevented by staggering the
transactions that share rewards

2. An individual stake pool member will on average receive the same rewards as with any of
the other approaches, but it will be much less predictable. This might be problematic from
a Public Perception perspective.

3. (Public Perception) although (in the limit) this is the same outcome as sharing, apparently
most humans don’t see things that way23 – they would prefer known outputs (even if
smaller) to unknown ones. An additional indicator of human response might be to look
at a similar mechanism (random rewards for depositing a fixed stake) has run since 1956.
Premium Bonds24 – computer nerds / crypto nuts should note who helped create the
original ERNIE). The public might like the gambling aspect, businesses might not!

23See Prospect Theory (https://en.wikipedia.org/wiki/Prospect theory)
24https://en.wikipedia.org/wiki/Premium Bond

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 49

A.3.3 Reward accounts per stake address

This is in some sense a variation of the “Automatic UTxO updates”, but trying to address its
shortcomings.

Introoduce the notion of a reward account, tied to a stake address. Reward accounts have
special rules:

• Account style accumulation, not UTxO style

• Paid into only by reward payout mechanism, never by normal Txs.

• Withdrawn from by normal Txs, using a witness for the stake address.

At the end of an epoch once the pool rewards are known, identify all the stake addresses
that contribute to a pool and the rewards per stake address. The system implicitly issues a
transaction/state-change to pay out rewards to the reward account of each stake address. These
rewards accumulate if they are not withdrawn.

Value held in a reward account contributes to stake that is delegated to a stake pool and
hence itself attracts rewards. This reduces the incentive to withdraw early and means the stake
corresponding to the reward is not effectively offline.

Withdrawal of rewards is done similarly to the withdrawal transaction from the Chimeric
Ledgers paper. This uses a witness for the stake address. Note that we also require at least one
UTxO input to the transaction for replay protection (see Section 3.3.2, Section 3.9.1).

This aggregation of rewards – account style – is the key to resolving the UTxO storage
asymptotic complexity problem. It is the same fundamental approach as the “Automatic UTxO
updates” approach, but putting the aggregation off to a separate class of addresses, so that
normal addresses remain in a pure UTxO style.

The asymptotic storage complexity of the ledger state (i.e. UTxO size) is linear in the number
of stake addresses, but is unrelated to the number of epochs that have passed. This is in contrast
to approaches that create UTxO entries for rewards on every epoch.

An important constraint for this approach is that it relies on stake addresses belonging to
stakeholders. This means every stakeholder’s value address must be associated with some stake
address belonging to the stakeholder. This means it is not possible to use addresses that point
directly to a stake pool and still be able to have a corresponding reward address, since there is
not stake address to use for that reward address. There are alternatives to using addresses that
point directly to pools25, but these either reduce privacy or increase fees. One alternative that
reduces privacy is for all addresses in a wallet to share the same stake address. This reduces
privacy since all addresses in the wallet can be tied together by using the same stake address.
Another alternative is to use a separate stake address for every value address. This means using
one delegation certificate per (value) address. This increases the fees for creating addresses in a
wallet following this policy, and for changing delegation choices. In principle there’s a sliding
scale between the two previous options, using a number of stake addresses, more than one but
fewer than the number of value addresses.

• stake in reward accounts is ordinary stake, and hence is counted in delegation to stake
pools.

• There is a potential interaction with UTxO deposit/refund approach. It may be that
(because the refund is smaller than the reward) that negative values need to be stored.
Though this may be able to done by some registration cost.

Advantages:

25During an early stage of the design, we had anticipated pointer addresses that would refer directly to a pool
registration certificate.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 50

• doesn’t “mutate” the UTxO. This reduces conceptual and implementation complexity. It
does not disrupt wallets and other things based on the UTxO model.

Disadvantages:

• introduces limited degree of account style chimeric ledgers. This adds a degree of concep-
tual and implementation complexity.

• Cannot use pointer addresses directly to stake pools. Increases fee and complexity cost of
maintaining wallet privacy.

• When people use multiple stake addresses to retain some privacy, it gets somewhat less
efficient at limiting the size of the required state. But it will still prevent the exponential
growth of the UTxO.

B Deposits

B.1 Motivation

One fundamental raison-d’être for transaction fees in Cardano (or any other cryptocurrency
for that matter) is to compensate node operators for their costs: Processing a transaction incurs
costs, and the person doing the processing should be reimbursed accordingly.

In reality however, there are more than just one-time processing costs. In particular, there
are long term storage costs whenever a transaction forces a node to dedicate local storage for the
stake associated with the transaction.

The prototypical example for this are UTxO-entries: Each additional such entry takes up
storage on each node running the protocol. There are other examples as well, including stake
pool registrations and delegation certificates.

We plan to address this issue by requiring a deposit to be paid for each resource that will
incur storage costs.

This deposit must be (partially) refundable, so that the holder of the resource has an incentive
to release the resource when it is no longer needed. So for example, somebody with a lot of
“dust” in their wallet would have an incentive to remove that dust, thus reclaiming some of the
deposit paid for UTxO-entries.

On the other hand, refunds should also decrease over time, so that there is an incentive to
release a resource sooner rather than later.

B.2 Mechanism

We propose to introduce the following configurable parameters:

1. A deposit amount (in ada) dR ∈ (0, ∞) for each type of resource R. The value of dR for a
resource type R should roughly reflect the cost to “rent the resource forever”.

2. A factor dmin ∈ (0, 1), which determines the minimal proportion of dR that will be refunded
on resource release. Higher value of dmin mean higher guaranteed refunds.

3. A decay constant λ ∈ (0, ∞) determining how refunds decrease over time. Higher values
of λ correspond to faster decrease of refunds over time.

Given these parameters, on acquiring a resource of type R, one would have to pay an amount
of dR ada. When the resource is released after t ≥ 1 slots, the holder of the resource is refunded

rR(t) = dR ·
(

dmin + (1 − dmin) · e−λt
)
∈ (dmin · dR, dR),

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 51

whereas the difference dR − rR(t) is added incrementally to the reward pools of the epochs
between registering and releasing the resource.

Note that it easily follows from well-known properties of the exponential function that

dr > rR(t)
t→∞

−−−−→ dmin · dR,

as desired.
As a fictional example, consider parameter values dmin = 0.25 and λ = 0.0001 and a resource

of type R with dR = 2. A user acquiring such a resource will initially include a deposit of
dR = 2 ada in the transaction creating that resource. This deposit will be held in escrow
until the resource gets released. If the user releases the resource after 10,000 slots, a refund of
rR(10, 000) = 1.0518 ada will be added to the available input of the associated transaction. The
difference dR − rR(10, 000) = 2 − 1.0518 = 0.9482 ada will be added to the rewards pool of that
epoch.

If our fictional user held onto the resource for 40,000 slots instead, their refund would only be
rR(40, 000) = 0.5275 ada, and 1.4725 ada would be added to the epoch rewards. In this example,
refunds will never drop below dmin · dR = 0.5 ada.

C Design Option: Stale Stake

This section sketches an optional mechanism for tracking stale stake, i.e., stake that is no longer
being actively controlled. Stale stake can limit the chain growth (since elected leaders might fail
to show up and sign blocks), and decrease the amount of honest stake, making the system easier
to attack. The mechanism described below is aimed at mitigating the first effect.

In the current design, stale stake is much less likely to become a problem than in earlier
iterations (since we automatically discard stake that is not delegated to a valid stake pool), so
we propose to not implement this design option, at least not in the initial Shelley release. We
keep it in this document for further reference.

In the current design, the only circumstance where an actor becoming inactive would limit
the chain growth is when a stake pool operator ceases to operate their pool, without retiring it.
Furthermore, since a failure to produce blocks will reduce the rewards for stake pool members,
such a pool would lose members and become irrelevant. Thus, an abandoned pool will be an
impediment to chain growth only if there are stakeholders delegating to that pool who also
become inactive and do not re-delegate.

In order to further mitigate this potential problem, the system could monitor the apparent
performance of all pools over time, and prune pools that fulfill both of the following conditions:

• The apparent performance of the pool has consistently been zero for a certain number of
epochs (i.e., the block did not produce any blocks after a certain moment in time).

• The pool has enough stake that it should have been elected as slot leader within those
epochs several times.

The number of epochs and size in stake should be such that we can rule out the hypothesis
that the pool is still active, but was just not elected as leader during those epochs, with statistical
significance26.

We do not anticipate that abandoned pools should become a problem anytime soon. By mon-
itoring the chain growth, we could detect whenever a significant fraction of pools accumulates
in abandoned pools, and implement abandoned pool detection when necessary.

26Setting those numbers would require some research if we were to implement this feature.

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 52

D FAQ

D.1 Why will stake pools accept new stake pool registration certificates?

It may seem counterintuitive that any of the existing stake pools would accept a stake pool
registration certificate for a new pool, for fear of losing some of their future rewards to the
increased competition. After all, with a naive approach to rewarding pools, a new pool would
potentially reduce the rewards of every existing pool. Existing systems like Bitcoin tend to
becoming more centralised because they use naive incentives.

One thing to realise is that Cardano uses a sophisticated incentives scheme [BKKS18], sum-
marised in Section 5, where the system tends to a fixed number k of saturated stake pools, and no
pool can increase their own rewards by trying to reduce the number of active pools below k. So
there is no general incentive, that would cause every stake pool to try to censor the registration
of a new pool.

The operator of a pool that is near the bottom of the list of competitive pools might fear to be
replaced by a new pool, and it would not be unreasonable for that operator to try to prevent
new pools from registering. But since it only takes a single pool to include the certificate27,there
is no hope to achieve this, and the rational behaviour is to just play by the rules and include the
certificate.

The situation where each pool accepts submitted certificates is a Nash Equilibrium, where
no player can benefit from deviating from this behaviour. Such configurations are stable, since
getting to a different state requires either collusion between a large number of players, or players
acting irrationally against their own interests.

However, there is a subtlety here: the state where no pool accepts new certificates might also
be a Nash Equilibrium: in this case, pools may refrain from entering a new certificate for fear to
lose rewards due to increased competition, which will either kick them out of the k best pools or
lower their margins.

Let us call the former equilibrium, where certificates are accepted, NE1, and the latter, where
they are rejected, NE2. Should we be worried that the system will end up in NE2? There are
three arguments why this is unlikely to happen:

• When the system is initially decentralised, a majority of blocks will be created by the
federation that ran the Byron network, and those players will behave honestly. So the
system will start in NE1.

• Stake pool members benefit from competition, and while censorship of certificates is not
observable from the final chain itself, the community can be expected to identify pools
that try to block the competition, by looking at the certificates that are being broadcast, the
produced blocks, and temporary forks. Once this becomes known, members will leave
such a pool. So there is a high risk involved for stake pools.

• Last but not least, the project is run by a community, and it is not unreasonable to expect
members to be at least somewhat cooperative.

D.2 Won’t stake pools reject delegation certificates that delegate away from them?

That would only work if a majority of stake pools colluded to censor such a certificate. But all
pools are incentivised to include the certificate, via fees. So this censorship would only happen

27To be precise, this also requires that a majority of players is going to accept a block that contains a certificate. But
dropping a block because it contains a certificate is much worse than just not including the certificate in a block: it
creates a fork and thereby attacks the integrity of the system, and a pool doing that risks losing their own block when
the fork is resolved. Also, a pool that repeatedly creates a fork after a block that contains a stake pool registration
certificate would sooner or later be detected and blamed by the community

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 53

if a majority of pools decided to partake in malicious behaviour and attack the system, against
their direct incentives.

E Transaction Metadata

Adding metadata to transactions is a useful new feature in Cardano Shelley. It is not related to
delegation or decentralisation.

E.1 Motivation and design goals

The purpose is to enable a range of new applications by allowing arbitrary structured data to be
included onto the chain, and to make effective use of that data. The term ‘metadata’ is perhaps
a misnomer since it is simply about placing application specific data on the chain; it is only
metadata from the point of view of a transaction since it is carried along with transactions and
not involved in validation.

A design goal is to add very little complexity to the on-chain part of the system but to get (or
allow for) as much functionality as possible, in combination with other features or components.
This helps keep implementation complexity lower. Importantly it keeps the size of the trusted
base low, by having the complex functionality to use the metadata outside of the trusted base.

A design principle that we preserve is that the historical data on the chain is not needed to
validate the next block or transaction. All data needed for later validation must be explicitly
tracked in the ledger state. This means the old part of the chain does not need to be preserved
locally at all, or at least not in random access storage. This avoids a problem that Ethereum ran
into with disk I/O becoming a performance bottleneck. This is why the design does not include
metadata into the ledger state, and does not make it accessible to later scripts.

E.2 Detail

The transaction can contain metadata. The metadata hash is part of the body of the transaction
so is covered by all transaction signatures. This allows for integrity checking and authentication
of the metadata.

The metadata value is kept outside of the transaction body, much like the transaction
witnesses. This follows the ‘segmented witness’ design idea that allows witnesses to be discarded
when the data is known to have been checked. We go one step further and keep the metadata
outside the body separately from the witnesses too, in principle allowing an implementation to
store or discard the metadata or the witnesses independently of each other.

The structure of the metadata is a mapping from keys to values. The keys are unsigned
integers limited in size up to 64 bits. The values are simple structured terms, consisting of
integers, text strings, byte strings, lists and maps.

There is no limit on the number of key-value pairs, except that imposed by the overall
transaction size limit. There is also no limit on individual structured values, but there is a limit
on the size of text strings and byte strings within the structured values.

A key aspect of the design is that metadata included in transactions is not available for later
retrieval from within the ledger validation rules, including scripts. The metadata is not entered
into the ledger state, and general historical chain data is not otherwise available to the ledger
validation rules.

The changes to the ledger validation rules are thus very limited: only the metadata syntax,
metadata size limits and the effect of the metadata on the transaction size calculation and thus
the transaction fees. No data is added to the ledger state. The metadata resides only on the
chain.

There are no special fees for metadata. The metadata simply contributes to the size of the
transaction and fees are based on the transaction size. This choice is justified by the fact that

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 54

the cost to operators is only the one-time processing cost and any long term storage of the
blockchain. There is no long term random access state.

The metadata within a transaction will be made available to validation scripts, including
Plutus Core scripts. Note again that this is only the immediate transaction being validated. No
metadata from predecessor transactions is available.

E.3 Explanation and use

The purpose of the metadata being a key value mapping is to make it straightforward to combine
metadata for multiple purposes into the same transaction. Think of the metadata key as being a
schema identifier, that says what the metadata value is. There is however no on-chain schema
enforcement. The interpretation of the data is entirely up to the applications that consume it.

It may make sense to establish a public registry of known metadata keys and corresponding
schemas.

The metadata value is required to be structured data rather than a single unstructured blob.
The available structure is like a simplified version of JSON. This makes the data easier to inspect
and manipulate, particularly by scripts, such as Plutus scripts, in future evolutions of the system.
The metadata values do not include floating point numbers because on-chain script languages
cannot support such types.

The size of strings in the structured value is limited to mitigate the problem of unpleasant or
illegal content being posted to the blockchain. It does not prevent this problem entirely, but it
means that it is not as simple as posting large binary blobs.

Of course posting data to the chain is only half the story. It must also be possible to use it
effectively. Part of the design is that the data is not kept in random-access storage for use by
on-chain scripts, so that validating the chain does not require random access to old parts of the
chain or large databases. So the design calls for metadata use to be managed off-chain using an
indexing service.

An indexing service, much like an explorer, enables the collection, authentication and query
of the metadata that is posted on the chain. It is clear that an agent can follow the chain and
write all transaction metadata into a relational database for later query. This is the design that
the backends for many blockchain explorers use. This solves the collection and query parts of
the problem, but not the authentication part.

Using HD wallet schemes however, the authenticity of the metadata can be ensured. De-
pending on the HD scheme – using public or non-public key derivation – the metadata can be
publicly verifiable, or only privately verifiable.

For example, a simple scheme to track the issuance of physical items could involve the
original owner posting metadata within transactions that spend from a designated wallet. An
indexing server that knows the HD wallet structure (and either public or private keys depending
on the HD scheme) can track the wallet and index all the metadata in transactions from that
wallet (or wallet sub-account).

Such schemes have a great deal of flexibility since there is a lot of flexibility in HD wallet
schemes. With public HD derivation, the indexing server does not need any signing keys, just
an appropriate verification key of a sub-tree in the HD wallet space. If that verification key
is revealed then anyone can reliably run the indexing service, and anyone can verify that the
metadata is authentic. If the verification key is not revealed then only the owner can run the
indexing service, and be used to implement some lookup or verification service, or it can reveal
the authenticity of a particular address without revealing all addresses.

It is even possible in principle to use multi-signature wallets, or wallets involving scripts.
There just needs to be some wallet scheme that the indexing service can use to reliably track and
authenticate the transactions using the wallet.

Obviously, to take advantage of these possibilities requires suitable wallet and indexing
components. These are however independent components and their complexity does not impact

Shelley Ledger: Delegation/Incentives Design Spec. (SL-D1 v.1.21, 2020/07/23) 55

the complexity of the on-chain rules, so does not add to the size of the trusted base of the overall
system.

E.4 Binary schema

The binary schema is very simple. The notation is CBOR CDDL (much like BNF).

metadata = { * metadata_key => metadata_value }

metadata_key = uint

metadata_value =

int

/ bytes .size 64

/ text .size 64

/ [* metadata_value]

/ { * metadata_value => metadata_value }

References

[ACG14] M. Araoz, R. X. Charles, and M. A. Garcia. Structure for deterministic p2sh mul-
tisignature wallets, April 2014. URL https://github.com/bitcoin/bips/blob/

master/bip-0045.mediawiki. BIP-45.

[BC20] A. Byaly and J. Corduan. Stake pool ranking in cardano, 2020. URL
https://hydra.iohk.io/job/Cardano/cardano-ledger/specs.pool-ranking/

latest/download-by-type/doc-pdf/pool-ranking.

[BKKS18] L. Bruenjes, A. Kiayias, E. Koutsoupias, and A.-P. Stouka. Reward sharing schemes
for stake pools. Computer Science and Game Theory (cs.GT) arXiv:1807.11218, 2018.

[CG19] J. Corduan and M. Güdemann. A formal specification of a multi-signature scheme
using scripts, 2019.

[DGKR17] B. M. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake protocol. IACR Cryptology ePrint Archive,
2017:573, 2017.

[KRDO17] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably se-
cure proof-of-stake blockchain protocol. In Advances in Cryptology – CRYPTO 2017,
volume 10401 of Security and Cryptology. Springer International Publishing, 2017.
doi:10.1007/978-3-319-63688-7.

[MMM01] T. Malkin, D. Micciancio, and S. Miner. Composition and efficiency tradeoffs for
forward-secure digital signatures. Cryptology ePrint Archive, Report 2001/034,
2001. https://eprint.iacr.org/2001/034.

[Wui12] P. Wuille. Hierarchical deterministic wallets, February 2012. URL https://github.

com/bitcoin/bips/blob/master/bip-0032.mediawiki. BIP-32.

https://github.com/bitcoin/bips/blob/master/bip-0045.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0045.mediawiki
https://hydra.iohk.io/job/Cardano/cardano-ledger/specs.pool-ranking/latest/download-by-type/doc-pdf/pool-ranking
https://hydra.iohk.io/job/Cardano/cardano-ledger/specs.pool-ranking/latest/download-by-type/doc-pdf/pool-ranking
http://dx.doi.org/10.1007/978-3-319-63688-7
https://eprint.iacr.org/2001/034
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

	Purpose
	Requirements
	Functional Requirements
	Proof of Eligibility
	Visibility of Delegation on the Blockchain
	Restricting Chain Delegation
	Cheap Re-Delegation
	Neutral Addresses
	Multi-Signature Addresses
	Multi-Signature Delegation

	Security Requirements
	Sybil Attack Protection at Stake Pool Level
	Address Non-malleability
	Public Payment Keys Should not be Disclosed Prematurely
	Mitigate Key Exposure
	Handle Inactive Stake Pools
	Avoid Hard Transition
	Change Delegation Without Payment Key

	Non-functional Requirements
	Asymptotic space and time complexity
	Minimise economic attacks

	Requirements to Preserve Existing Features
	Master Recovery Key
	Address Recognition
	Wallet should be Runnable on Independent Devices
	Maintain Privacy
	Short Addresses
	No lookup of old blocks

	Design Goals
	No Special Wallet for Stake Pool Operators

	Design of Delegation
	Overview of Delegation
	Addresses and Credentials
	On Pointer Addresses
	On Enterprise Addresses
	Reward Accounts
	On Byron Addresses
	HD Wallet Structure in Shelley
	Address Recognition

	Certificates and Registrations
	Certificates on the Blockchain
	Certificate Replay Prevention
	Stake Address Registration Certificates
	Stake Pool Registration Certificates
	Single Operator, Possibly Multiple Owners
	Delegation Certificates
	Operational Key Certificates
	Certificate Precedence and Validity

	Delegation Relations
	Address Delegation Relation
	Stake Pool Delegation Relation
	Overall Stake Distribution
	Chain Delegation

	State Tracking for delegation
	Stake Addresses
	Reward Accounts
	Stake Pools
	Active Delegation Certificates
	Stake per Stake Address

	Slot Leader Schedule and Rewards Calculation
	Block Validity and Operational Key Certificates
	Transition to Decentralization
	Motivation
	Proposal
	Rewards during the Transition Phase
	Transition Plan

	Rewards
	Distributing Rewards

	Fees
	Transaction fees
	Deposits

	Time to Live for Transactions
	Robustness at the Epoch Boundary
	Calculating the Leader Schedule
	Calculating and Distributing Rewards

	Wallet Recovery Process
	Trees of Depth 1
	Taller Trees
	Maximal Address Gap

	Delegation Scenarios
	Stake Pool Registration
	Stake Pool Metadata
	Display of Stake Pools in the Wallet
	Basic Delegation
	Delegation of Cold Wallets
	Self Delegation

	Design of Incentives
	Overview of Incentives
	Parameters
	Reminder: Stake Pool Registration
	Epoch Rewards
	Transaction Fees
	Deposits
	Monetary Expansion
	Treasury

	Reward Splitting
	Relative Stake: Active vs Total
	Stake, Performance, and Block Production
	Pool Rewards
	Reward Splitting inside a pool

	Non-Myopic Utility
	Pool Desirability and Ranking
	Non-Myopic Pool Stake
	Non-Myopic Pool Operator Rewards
	Non-Myopic Pool Member Rewards
	Replacing Apparent Performance

	Utility
	Claiming Rewards
	Information in Daedalus
	Deciding on Good Values for the Parameters
	k
	a_0
	\rho
	\tau

	Satisfying the Requirements
	Assessment of Rewards Sharing Mechanisms
	General Considerations
	Hierarchy of desirability of reward distribution
	Summary of key points of when rewards are calculated

	Approaches that are Ruled Out
	Manual Sharing
	Automatically Issue Transactions Each Epoch
	Let Members Collect Rewards

	Feasible Approaches
	Automatic UTxO Updates
	Lotteries per Stake Pool
	Reward accounts per stake address

	Deposits
	Motivation
	Mechanism

	Design Option: Stale Stake
	FAQ
	Why will stake pools accept new stake pool registration certificates?
	Won't stake pools reject delegation certificates that delegate away from them?

	Transaction Metadata
	Motivation and design goals
	Detail
	Explanation and use
	Binary schema

	References

